Zuletzt geändert von akukin am 2024/10/10 16:08

Von Version 4.2
bearbeitet von Holger Engels
am 2024/01/28 19:43
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 5.1
bearbeitet von akukin
am 2024/10/01 16:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -7,3 +7,25 @@
7 7  [[Kompetenzen.K5]] Ich kann Schnittwinkel zwischen Gerade und Koordinatenebenen berechnen.
8 8  
9 9  {{lernende}}[[Parameterform erkunden>>https://kmap.eu/app/browser/Mathematik/Geraden%20im%20Raum/Gerade%20in%20Parameterform#erkunden]]{{/lernende}}
10 +
11 +{{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB>>hhttps://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_15.pdf]]" niveau="e" tags="iqb"}}
12 +Gegeben ist die Schar der Geraden {{formula}}g_k: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}.
13 +
14 +1. Begründe, dass alle Geraden der Schar parallel zueinander sind.
15 +1. (((
16 +Betrachtet wird das Quadrat mit folgenden Eigenschaften:
17 +* Die Punkte {{formula}}O\left(0\left|0\right|0\right){{/formula}} und {{formula}}P\left(11\left|4\right|5\right){{/formula}} sind Eckpunkte des Quadrats.
18 +* Zwei Seiten des Quadrats liegen auf Geraden der Schar.
19 +
20 +Weise nach, dass {{formula}}O{{/formula}} und {{formula}}P{{/formula}} keine benachbarten Eckpunkte dieses Quadrats sind.
21 +)))
22 +
23 +
24 +
25 +__Hinweis__:
26 +Der Begriff „Schar“ beziehungsweise „Funktionsschar“ ist nicht konform zum Bildungsplan für berufliche Gymnasien in Baden-Württemberg. Deswegen wäre eine derartige Aufgabe für die Abiturprüfung an beruflichen Gymnasien nicht zulässig.
27 +**Eine bildungsplankonforme Variante wäre zum Beispiel**:
28 +Gegeben ist die Gerade {{formula}}g_k: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}. {{formula}}k{{/formula}} ist hierbei eine feste reelle Zahl.
29 +
30 +
31 +{{/aufgabe}}