Zuletzt geändert von akukin am 2024/10/10 16:08

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 [[Kompetenzen.K5]] [[Kompetenzen.K6]] Ich kann Geraden mithilfe von Parametergleichungen darstellen und deren besondere Lage im Koordinatensystem beschreiben.
4 [[Kompetenzen.K5]] Ich kann beurteilen, ob ein Punkt auf einer Geraden liegt.
5 [[Kompetenzen.K5]] Ich kann Spurpunkte berechnen.
6 [[Kompetenzen.K4]] Ich kann Geraden im Koordinatensystem zeichnen.
7 [[Kompetenzen.K5]] Ich kann Schnittwinkel zwischen Gerade und Koordinatenebenen berechnen.
8
9 {{lernende}}[[Parameterform erkunden>>https://kmap.eu/app/browser/Mathematik/Geraden%20im%20Raum/Gerade%20in%20Parameterform#erkunden]]{{/lernende}}
10
11 {{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB e.V.>>hhttps://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_15.pdf]]" niveau="e" tags="iqb" cc="by"}}
12 Gegeben ist die Schar der Geraden {{formula}}g_k: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}.
13
14 1. Begründe, dass alle Geraden der Schar parallel zueinander sind.
15 1. (((
16 Betrachtet wird das Quadrat mit folgenden Eigenschaften:
17 * Die Punkte {{formula}}O\left(0\left|0\right|0\right){{/formula}} und {{formula}}P\left(11\left|4\right|5\right){{/formula}} sind Eckpunkte des Quadrats.
18 * Zwei Seiten des Quadrats liegen auf Geraden der Schar.
19
20 Weise nach, dass {{formula}}O{{/formula}} und {{formula}}P{{/formula}} keine benachbarten Eckpunkte dieses Quadrats sind.
21 )))
22
23
24
25 __Hinweis__:
26 Der Begriff „Schar“ beziehungsweise „Funktionsschar“ ist nicht konform zum Bildungsplan für berufliche Gymnasien in Baden-Württemberg. Deswegen wäre eine derartige Aufgabe für die Abiturprüfung an beruflichen Gymnasien nicht zulässig.
27 **Eine bildungsplankonforme Variante wäre zum Beispiel**:
28 Gegeben ist die Gerade {{formula}}g: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}. {{formula}}k{{/formula}} ist hierbei eine feste reelle Zahl.
29 1. Begründe, dass die Richtung der Geraden bekannt ist, auch wenn die Zahl {{formula}}k{{/formula}} noch nicht bestimmt wurde.
30 1. ((( Betrachtet wird das Quadrat mit folgenden Eigenschaften:
31 * Die Punkte {{formula}}O\left(0\left|0\right|0\right){{/formula}} und {{formula}}P\left(11\left|4\right|5\right){{/formula}} sind Eckpunkte des Quadrats.
32 * Zwei Seiten des Quadrats liegen auf Geraden, die echt parallel zu {{formula}}g{{/formula}} sind.
33
34
35 Weise nach, dass {{formula}}O{{/formula}} und {{formula}}P{{/formula}} keine benachbarten Eckpunkte dieses Quadrats sind )))
36
37
38
39 {{/aufgabe}}