Zuletzt geändert von akukin am 2024/10/10 16:08

Von Version 5.1
bearbeitet von akukin
am 2024/10/01 16:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 8.1
bearbeitet von akukin
am 2024/10/10 16:08
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -8,7 +8,7 @@
8 8  
9 9  {{lernende}}[[Parameterform erkunden>>https://kmap.eu/app/browser/Mathematik/Geraden%20im%20Raum/Gerade%20in%20Parameterform#erkunden]]{{/lernende}}
10 10  
11 -{{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB>>hhttps://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_15.pdf]]" niveau="e" tags="iqb"}}
11 +{{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB e.V.>>hhttps://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_15.pdf]]" niveau="e" tags="iqb" cc="by"}}
12 12  Gegeben ist die Schar der Geraden {{formula}}g_k: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}.
13 13  
14 14  1. Begründe, dass alle Geraden der Schar parallel zueinander sind.
... ... @@ -25,7 +25,15 @@
25 25  __Hinweis__:
26 26  Der Begriff „Schar“ beziehungsweise „Funktionsschar“ ist nicht konform zum Bildungsplan für berufliche Gymnasien in Baden-Württemberg. Deswegen wäre eine derartige Aufgabe für die Abiturprüfung an beruflichen Gymnasien nicht zulässig.
27 27  **Eine bildungsplankonforme Variante wäre zum Beispiel**:
28 -Gegeben ist die Gerade {{formula}}g_k: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}. {{formula}}k{{/formula}} ist hierbei eine feste reelle Zahl.
28 +Gegeben ist die Gerade {{formula}}g: \vec{x}=\left(\begin{array}{c} k \\ -4k \\ k \end{array}\right)+ \mu \cdot \left(\begin{array}{c} 4 \\ 8 \\ 1 \end{array}\right){{/formula}} mit {{formula}}\mu\in\mathbb{R}{{/formula}} und {{formula}}k\in\mathbb{R}{{/formula}}. {{formula}}k{{/formula}} ist hierbei eine feste reelle Zahl.
29 +1. Begründe, dass die Richtung der Geraden bekannt ist, auch wenn die Zahl {{formula}}k{{/formula}} noch nicht bestimmt wurde.
30 +1. ((( Betrachtet wird das Quadrat mit folgenden Eigenschaften:
31 +* Die Punkte {{formula}}O\left(0\left|0\right|0\right){{/formula}} und {{formula}}P\left(11\left|4\right|5\right){{/formula}} sind Eckpunkte des Quadrats.
32 +* Zwei Seiten des Quadrats liegen auf Geraden, die echt parallel zu {{formula}}g{{/formula}} sind.
29 29  
30 30  
35 +Weise nach, dass {{formula}}O{{/formula}} und {{formula}}P{{/formula}} keine benachbarten Eckpunkte dieses Quadrats sind )))
36 +
37 +
38 +
31 31  {{/aufgabe}}