Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | {{aufgabe id="LGS, Lösungsvielfalt" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb" cc="by"}} | ||
2 | Gegeben ist das Gleichungssystem | ||
3 | {{formula}}\begin{matrix}\mathrm{I}&2x&\ &\ &+&z\ &=&0\\\mathrm{II}&\ &\ &-y&+&2z&=&0\\\mathrm{III}&\ &\ &2y&+&bz&=&1\\\end{matrix}{{/formula}} | ||
4 | mit {{formula}}x,y,z\in\mathbb{R}{{/formula}}. Untersuche in Abhängigkeit von {{formula}}b{{/formula}} mit {{formula}}b\in\mathbb{R}{{/formula}} die Anzahl der Lösungen des Gleichungssystems; gib gegebenenfalls die Lösungen an. | ||
5 | |||
6 | {{/aufgabe}} | ||
7 | |||
8 | {{seitenreflexion}} |