Zuletzt geändert von Martina Wagner am 2025/10/20 13:30

Von Version 35.4
bearbeitet von ankefrohberger
am 2025/10/01 12:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 35.6
bearbeitet von ankefrohberger
am 2025/10/01 12:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -64,13 +64,13 @@
64 64  11. {{formula}} P(E) = \text{Anzahl der möglichen Ergebnisse} \times \text{Anzahl der günstigen Ergebnisse} {{/formula}}
65 65  11. {{formula}} P(E) = \text{Anzahl der günstigen Ergebnisse} - \text{Anzahl der möglichen Ergebnisse} {{/formula}}
66 66  
67 -1. **Wenn du eine Karte aus einem Standarddeck von 52 Karten ziehst, wie groß ist die Wahrscheinlichkeit, ein Herz zu ziehen? Berechne.**
67 +1. **Du ziehst eine Karte aus einem Standarddeck von 52 Karten. Wie groß ist die Wahrscheinlichkeit, ein Herz zu ziehen? Berechne.**
68 68  (% style="list-style-type: disc %)
69 69  11. {{formula}} P(\text{Herz}) = \frac{1}{4} {{/formula}}
70 70  11. {{formula}} P(\text{Herz}) = \frac{1}{2} {{/formula}}
71 71  11. {{formula}} P(\text{Herz}) = \frac{1}{13} {{/formula}}
72 72  
73 -1. **Wenn du zwei Münzen gleichzeitig wirfst, gib an, wie viele mögliche Ergebnisse es gibt.**
73 +1. **Du wirfst zwei Münzen gleichzeitig, gib an, wie viele mögliche Ergebnisse es gibt.**
74 74  (% style="list-style-type: disc %)
75 75  11. 2
76 76  11. 3
... ... @@ -85,7 +85,7 @@
85 85  
86 86  == Mehrstufige Zufallsexperimente ==
87 87  
88 -{{aufgabe id="Kugelziehung" afb="I" kompetenzen="K2, K5" quelle="C.Karl und A.Frohberger" cc="BY-SA" zeit="10"}}
88 +{{aufgabe id="Kugelziehung" afb="II" kompetenzen="K2, K5, K6" quelle="C.Karl und A.Frohberger" cc="BY-SA" zeit="10"}}
89 89  In einer Urne befinden sich zwei rote und drei blaue Kugeln. Ziehe zwei Kugeln nacheinander ohne Zurücklegen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
90 90  (%class=abc%)
91 91  1. Beide Kugeln sind rot.
... ... @@ -94,7 +94,7 @@
94 94  *Hinweis: Zeichne ein Baumdiagramm zur Veranschaulichung.*
95 95  {{/aufgabe}}
96 96  
97 -{{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
97 +{{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K2, K3, K4, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
98 98  Ein Glücksrad hat die Farben Rot, Blau und Gelb. Die Wahrscheinlichkeiten sind wie folgt:
99 99  Rot: 50%
100 100  Blau: 30%
... ... @@ -105,7 +105,7 @@
105 105  1. Berechne die Wahrscheinlichkeit, dass es zweimal Gelb zeigt.
106 106  {{/aufgabe}}
107 107  
108 -{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
108 +{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="III" kompetenzen="K2, K3, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
109 109  Marie und Sophia ziehen nacheinander Bonbons aus einer Tüte. In der Tüte sind 4 Himbeer- und 6 Zitronenbonbons.
110 110  (%class=abc%)
111 111  1. Bestimme die Wahrscheinlichkeit, dass Marie ein Himbeerbonbon zieht und Sophia danach ein Zitronenbonbon.
... ... @@ -113,7 +113,7 @@
113 113  1. Erstelle eine kurze Geschichte, in der diese Wahrscheinlichkeiten vorkommen.
114 114  {{/aufgabe}}
115 115  
116 -{{aufgabe id="Wahrscheinlichkeitskarten" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
116 +{{aufgabe id="Wahrscheinlichkeitskarten" afb="III" kompetenzen="K2, K3, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
117 117  Denke dir ein Zufallsexperiment aus, bei dem drei verschiedene Ergebnisse a,b,c auftreten können und die folgende Wahrscheinlichkeiten haben:
118 118  - Ergebnis a: 0,2
119 119  - Ergebnis b: 0,5
... ... @@ -120,10 +120,10 @@
120 120  - Ergebnis c: 0,3
121 121  (%class=abc%)
122 122  1. Beschreibe dein ausgedachtes Experimetn und berechne die Gesamtwahrscheinlichkeit, dass mindestens ein Ergebnis eintritt.
123 -1. Berechne die Gesamtwahrscheinlichkeit dafür, dass ein Ergebnis zweimal in Folge auftritt.
123 +1. Berechne die Gesamtwahrscheinlichkeit dafür, dass ein Ergebnis zweimal in Folge auftritt.
124 124  {{/aufgabe}}
125 125  
126 -{{aufgabe id="Alltagsbeispiele" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
126 +{{aufgabe id="Alltagsbeispiele" afb="III" kompetenzen="K3, K5, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
127 127  Denke an eine alltägliche Situation, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
128 128  (%class=abc%)
129 129  1. Beschreibe die Situation und die möglichen Ergebnisse.
... ... @@ -132,7 +132,7 @@
132 132  {{/aufgabe}}
133 133  
134 134  
135 -{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
135 +{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K4, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
136 136  Löse das folgende Rätsel:
137 137  
138 138  Ein Würfel wird dreimal geworfen. Berechne die Wahrscheinlichkeit, dass mindestens einmal eine Sechs geworfen wird.
... ... @@ -142,6 +142,6 @@
142 142  {{/aufgabe}}
143 143  
144 144  
145 -{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge=""/}}
145 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="5"/}}
146 146  
147 147  ~{~{/aufgabe}}