Zuletzt geändert von Martina Wagner am 2025/10/20 13:30

Von Version 36.1
bearbeitet von Martina Wagner
am 2025/10/06 09:01
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martina Wagner
am 2025/10/06 10:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,10 +3,8 @@
3 3  [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann die Zufallsexperimente deuten.
4 4  [[Kompetenzen.K5]] Ich kann die Wahrscheinlichkeiten, insbesondere bei Laplace-Experimenten berechnen
5 5  
6 -== Aufgaben zu Laplace-Experimenten ==
7 -
8 8  {{aufgabe id="Laplace-Experimente" afb="I" kompetenzen="K1, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="5"}}
9 -Nenne die Eigenschaften eines Laplace-Experiments und gib drei Beispiele an.
7 +
10 10  Beurteile, ob es sich bei folgenden Beispielen um Laplace-Experimente handelt:
11 11  (%class=abc%)
12 12  1. Wurf eines Flaschendeckels
... ... @@ -17,81 +17,74 @@
17 17  1. Fußballspiel zwischen FC Bayern München und SV Waldhof Mannheim
18 18  {{/aufgabe}}
19 19  
20 -== Quiz über Laplace-Experimente ==
21 21  
22 -{{aufgabe id="Quiz" afb="I" kompetenzen="K1, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
19 +{{aufgabe id="Quiz" afb="I" kompetenzen="K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
23 23  
21 +Gib jeweils die richtige Antwort an.
22 +
24 24  (%class=abc%)
25 -1. **Beschreibe, was man unter einem Laplace-Experiment versteht?**
26 -(% style="list-style-type: disc %)
27 -11. Ein Experiment mit ungleichen Wahrscheinlichkeiten
28 -11. Ein Experiment, bei dem alle möglichen Ergebnisse gleich wahrscheinlich sind
29 -11. Ein Experiment, das nur einmal durchgeführt wird
24 +1. Ein Laplace-Experiment ist
25 +(% style="list-style-type: disc %)
26 +11. ein Experiment mit ungleichen Wahrscheinlichkeiten
27 +11. ein Experiment, bei dem alle möglichen Ergebnisse gleich wahrscheinlich sind
28 +11. ein Experiment, das nur einmal durchgeführt wird
30 30  
31 -1. **Gib an, wie viele mögliche Ergebnisse es bei einem Wurf mit einem fairen Würfel gibt**
30 +1. Bei einem Wurf mit einem fairen Würfel gibt es
32 32  (% style="list-style-type: disc %)
33 -11. 4
34 -11. 6
35 -11. 8
32 +11. 4 mögliche Ergebnisse
33 +11. 6 mögliche Ergebnisse
34 +11. 8 mögliche Ergebnisse
36 36  
37 -1. [[image:1.jpeg||width=120 style="float:right"]]**Gib an, welche der folgenden Wahrscheinlichkeiten für das Ergebnis "Kopf" korrekt ist, wenn du eine faire Münze wirfst.**
36 +1. [[image:1.jpeg||width=120 style="float:right"]]Bei einem Wurf mit einer idealen Münze ist die Wahrscheinlichkeit für "Kopf"
38 38  (% style="list-style-type: disc %)
39 -11. {{formula}} P(Kopf) = \frac{1}{2} {{/formula}}
40 -11. {{formula}} P(Kopf) = \frac{1}{3} {{/formula}}
41 -11. {{formula}} P(Kopf) = \frac{1}{4} {{/formula}}
42 -
43 -1. (%style="clear:right"%)**Ein Beutel enthält 2 rote und 3 blaue Kugeln. Ermittle die Wahrscheinlichkeit für das Ziehen einer blauen Kugel.**
38 +11. {{formula}} \frac{1}{2} {{/formula}}
39 +11. {{formula}} \frac{1}{3} {{/formula}}
40 +11. {{formula}} \frac{1}{4} {{/formula}}
41 +
42 +1. (%style="clear:right"%)Ein Beutel enthält 2 rote und 3 blaue Kugeln. Die Wahrscheinlichkeit für die blaue Kugel ist
44 44  (% style="list-style-type: disc %)
45 -11. {{formula}} P(\text{blau}) = \frac{3}{5} {{/formula}}[[image:2a.png||width=80 style="float: right"]]
46 -11. {{formula}} P(\text{blau}) = \frac{2}{5} {{/formula}}
47 -11. {{formula}} P(\text{blau}) = \frac{2}{3} {{/formula}}
44 +11. {{formula}} \frac{3}{5} {{/formula}}[[image:2a.png||width=80 style="float: right"]]
45 +11. {{formula}} \frac{2}{5} {{/formula}}
46 +11. {{formula}} \frac{2}{3} {{/formula}}
48 48  
49 -1. **Bei einem Laplace-Experiment wird die Anzahl der Durchführungen erhöht. Dabei soll die Entwicklung der relativen Häufigkeit eines Ergebnisses betrachtet werden. Entscheide dich für eine der Lösungen.**
48 +1. Du wirfst einen einen rfel 60 Mal. Insgesamt erhältst du 10 Mal eine 4. Die relative Häufigkeit für das Ergebnis "4" ist
50 50  (% style="list-style-type: disc %)
51 -11. Sie bleibt konstant
52 -11. Sie schwankt stark
53 -11. Sie nähert sich der Wahrscheinlichkeit an
50 +11. {{formula}} \frac{1}{6} {{/formula}}
51 +11. {{formula}} \frac{1}{5} {{/formula}}
52 +11. {{formula}} \frac{1}{10} {{/formula}}
54 54  
55 -1. **Du wirfst einen einen Würfel 60 Mal. Insgesamt erhältst du 10 Mal eine 4. Wie groß ist die relative Häufigkeit für das Ergebnis "4"? Entscheide und begründe.**
54 +1. Die Formel zur Berechnung der Wahrscheinlichkeit eines Ereignisses in einem Laplace-Experiment ist
56 56  (% style="list-style-type: disc %)
57 -11. {{formula}} P(4) = \frac{1}{6} {{/formula}}
58 -11. {{formula}} P(4) = \frac{1}{5} {{/formula}}
59 -11. {{formula}} P(4) = \frac{1}{10} {{/formula}}
56 +11. {{formula}} \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}} {{/formula}}
57 +11. {{formula}} \text{Anzahl der möglichen Ergebnisse} \times \text{Anzahl der günstigen Ergebnisse} {{/formula}}
58 +11. {{formula}} \text{Anzahl der günstigen Ergebnisse} - \text{Anzahl der möglichen Ergebnisse} {{/formula}}
60 60  
61 -1. **Gib die Formel zur Berechnung der Wahrscheinlichkeit eines Ereignisses in einem Laplace-Experiment an.**
60 +1. Du ziehst eine Karte aus einem Standarddeck von 32 Karten. Die Wahrscheinlichkeit r ein "Herz"
62 62  (% style="list-style-type: disc %)
63 -11. {{formula}} P(E) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}} {{/formula}}
64 -11. {{formula}} P(E) = \text{Anzahl der möglichen Ergebnisse} \times \text{Anzahl der günstigen Ergebnisse} {{/formula}}
65 -11. {{formula}} P(E) = \text{Anzahl der günstigen Ergebnisse} - \text{Anzahl der möglichen Ergebnisse} {{/formula}}
62 +11. {{formula}} \frac{1}{4} {{/formula}}
63 +11. {{formula}} \frac{1}{2} {{/formula}}
64 +11. {{formula}} \frac{1}{13} {{/formula}}
66 66  
67 -1. **Du ziehst eine Karte aus einem Standarddeck von 52 Karten. Wie groß ist die Wahrscheinlichkeit, ein Herz zu ziehen? Berechne.**
66 +1. Du wirfst zwei nzen gleichzeitig. Die Anzahl der mögliche Ergebnisse ist
68 68  (% style="list-style-type: disc %)
69 -11. {{formula}} P(\text{Herz}) = \frac{1}{4} {{/formula}}
70 -11. {{formula}} P(\text{Herz}) = \frac{1}{2} {{/formula}}
71 -11. {{formula}} P(\text{Herz}) = \frac{1}{13} {{/formula}}
72 -
73 -1. **Du wirfst zwei Münzen gleichzeitig, gib an, wie viele mögliche Ergebnisse es gibt.**
74 -(% style="list-style-type: disc %)
75 75  11. 2
76 76  11. 3
77 77  11. 4
78 78  
79 -1. **In einem Laplace-Experiment mit 10 möglichen Ergebnissen, wie hoch ist die Wahrscheinlichkeit, ein bestimmtes Ergebnis zu erzielen? Berechne.**
72 +1. Ein Laplace-Experiment mit 10 möglichen gleichwahrscheinlichen Ergebnissen. Die Wahrscheinlichkeit für ein Ergebnis ist
80 80  (% style="list-style-type: disc %)
81 -11. {{formula}} P(E) = \frac{1}{5} {{/formula}}
82 -11. {{formula}} P(E) = \frac{1}{10} {{/formula}}
83 -11. {{formula}} P(E) = \frac{1}{2} {{/formula}}
74 +11. {{formula}} \frac{1}{5} {{/formula}}
75 +11. {{formula}} \frac{1}{10} {{/formula}}
76 +11. {{formula}} \frac{1}{2} {{/formula}}
84 84  {{/aufgabe}}
85 85  
86 -== Mehrstufige Zufallsexperimente ==
87 87  
88 88  {{aufgabe id="Kugelziehung" afb="II" kompetenzen="K5, K6" quelle="C.Karl und A.Frohberger" cc="BY-SA" zeit="10"}}
89 -In einer Urne befinden sich zwei rote und drei blaue Kugeln. Ziehe zwei Kugeln nacheinander ohne Zurücklegen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
81 +In einer Urne befinden sich zwei rote und drei blaue Kugeln. Es werden zwei Kugeln nacheinander ohne Zurücklegen gezogen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
90 90  (%class=abc%)
91 91  1. Beide Kugeln sind rot.
92 92  1. Eine Kugel ist rot und eine ist blau.
93 93  1. Beide Kugeln sind blau.
94 -*Hinweis: Zeichne ein Baumdiagramm zur Veranschaulichung.*
95 95  {{/aufgabe}}
96 96  
97 97  {{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K4, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
... ... @@ -100,8 +100,8 @@
100 100  Blau: 30%
101 101  Gelb: 20%
102 102  (%class=abc%)
103 -1. Zeichne ein Baumdiagramm für zwei Umdrehungen des Glücksrads.
104 -1. Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
94 +1. Zeichne das Glücksrad.
95 +1. Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
105 105  1. Berechne die Wahrscheinlichkeit, dass es zweimal Gelb zeigt.
106 106  {{/aufgabe}}
107 107  
... ... @@ -114,31 +114,31 @@
114 114  {{/aufgabe}}
115 115  
116 116  {{aufgabe id="Wahrscheinlichkeitskarten" afb="III" kompetenzen="K2, K3, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
117 -Denke dir ein Zufallsexperiment aus, bei dem drei verschiedene Ergebnisse a,b,c auftreten können und die folgende Wahrscheinlichkeiten haben:
108 +Bei einem Zufallsexperiment können drei verschiedene Ergebnisse a,b,c auftreten. Die Ergebnisse haben folgende Wahrscheinlichkeiten:
118 118  - Ergebnis a: 0,2
119 119  - Ergebnis b: 0,5
120 120  - Ergebnis c: 0,3
121 121  (%class=abc%)
122 -1. Beschreibe dein ausgedachtes Experiment und berechne die Gesamtwahrscheinlichkeit, dass mindestens ein Ergebnis eintritt.
113 +1. Beschreibe ein mögliches Experiment mit diesen Wahtrscheinlichkeiten.
114 +
123 123  1. Berechne die Gesamtwahrscheinlichkeit dafür, dass ein Ergebnis zweimal in Folge auftritt.
124 124  {{/aufgabe}}
125 125  
126 126  {{aufgabe id="Alltagsbeispiele" afb="III" kompetenzen="K3, K5, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
127 -Denke an eine alltägliche Situation, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
119 +Es gibt alltägliche Situationen, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
128 128  (%class=abc%)
129 -1. Beschreibe die Situation und die möglichen Ergebnisse.
130 -1. Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
121 +1. Nenne eine solche Situation und die möglichen Ergebnisse.
131 131  1. Erstelle ein Baumdiagramm zur Veranschaulichung.
123 +1. Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
132 132  {{/aufgabe}}
133 133  
134 134  
135 -{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K4, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
127 +{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K4, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
136 136  Löse das folgende Rätsel:
137 137  
138 138  Ein Würfel wird dreimal geworfen. Berechne die Wahrscheinlichkeit, dass mindestens einmal eine Sechs geworfen wird.
139 139  (%class=abc%)
140 -1. Erstelle eine Tabelle, um die möglichen Ergebnisse aufzulisten.
141 -1. Berechne die Wahrscheinlichkeit, dass keine Sechs geworfen wird, und ziehe die Schlussfolgerung.
132 +
142 142  {{/aufgabe}}
143 143  
144 144