Zuletzt geändert von Martina Wagner am 2025/10/20 13:30

Von Version 4.1
bearbeitet von Martina Wagner
am 2025/03/26 09:57
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 8.10
bearbeitet von ankefrohberger
am 2025/09/30 13:22
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinawagner
1 +XWiki.ankefrohberger
Inhalt
... ... @@ -3,9 +3,41 @@
3 3  [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann die Zufallsexperimente deuten.
4 4  [[Kompetenzen.K5]] Ich kann die Wahrscheinlichkeiten, insbesondere bei Laplace-Experimenten berechnen
5 5  
6 -{{aufgabe id="Lalala" afb="I" kompetenzen="K5" quelle="Mathebrücke" zeit="2" cc="by-sa" tags="mathebrücke"}}
7 -Aufgabentext
6 +== Aufgaben zu Laplace-Experimenten ==
7 +{{aufgabe id="Laplace-Experimente" afb="I,II" kompetenzen="K1, K6" quelle="test" cc="BY-SA" zeit="5"}}
8 +(% style="list-style-type: katakana" %)
9 +1. Nenne die Eigenschaften eines Laplace-Experiments und gib drei Beispiele an.
10 +2. Beurteile, ob es sich bei folgenden Beispielen um Laplace-Experimente handelt:
11 +(% style="list-style-type: lower-alpha" %)
12 + a. Wurf eines Flaschendeckels
13 + b. In einer undurchsichtigen Schale befinden sich je 10 Bonbons in 5 verschiedenen Geschmacksrichtungen (z.B. Erdbeere, Zitrone, Apfel, Cola, Himbeere). Hanna zieht ein Bonbon.
14 + c. Schreiben einer Matheklassenarbeit
15 + d. Ein Hund darf sich eines von drei Leckerli aussuchen: Fleisch, Käse oder Karotte.
16 + e. Wähle eine Farbe beim Roulette-Spiel.
17 + f. Fußballspiel zwischen FC Bayern München und SV Waldhof Mannheim
8 8  {{/aufgabe}}
9 9  
20 +== Wahrscheinlichkeiten ==
21 +Wenn du die Wahrscheinlichkeiten für die Laplace-Experimente berechnen möchtest, kannst du folgende Formel verwenden:
22 +
23 +{{formula}}
24 +P(E) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}
25 +{{/formula}}
26 +
27 +### Beispiele für Wahrscheinlichkeiten:
28 +- **Wurf eines Würfels:**
29 + - Mögliche Ergebnisse: 6 (1, 2, 3, 4, 5, 6)
30 + - Wahrscheinlichkeit für eine 4:
31 + {{formula}}
32 + P(4) = \frac{1}{6}
33 + {{/formula}}
34 +
35 +- **Ziehen einer roten Kugel aus einem Beutel mit 3 roten und 2 blauen Kugeln:**
36 + - Mögliche Ergebnisse: 5 (3 rot + 2 blau)
37 + - Wahrscheinlichkeit für eine rote Kugel:
38 + {{formula}}
39 + P(\text{rot}) = \frac{3}{5}
40 + {{/formula}}
41 +
10 10  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
11 11