Änderungen von Dokument BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung
Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43
Von Version 174.1
bearbeitet von Sandra Vogt
am 2025/12/17 14:19
am 2025/12/17 14:19
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 193.1
bearbeitet von Sandra Vogt
am 2025/12/17 15:24
am 2025/12/17 15:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -11,8 +11,8 @@ 11 11 | 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}} 12 12 {{/aufgabe}} 13 13 14 -{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich ?" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}15 -Ein Schüler behauptet: {{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}. "14 +{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}} 15 +Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“// 16 16 17 17 a) Untersuche, ob diese Aussage für alle Zahlen wahr ist. 18 18 Begründe deine Entscheidung mithilfe eines geeigneten Beispiels oder Gegenbeispiels. ... ... @@ -47,7 +47,7 @@ 47 47 1. {{formula}}a^{\frac{8}{3}}{{/formula}} 48 48 {{/aufgabe}} 49 49 50 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von derWurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}50 +{{aufgabe id="Potenzen mit rationalen Exponenten: Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 51 51 Gib in Potenzschreibweise an und berechne, wenn möglich. 52 52 (% style="list-style: alphastyle" %) 53 53 1. {{formula}}\sqrt{3^5}{{/formula}} ... ... @@ -64,15 +64,6 @@ 64 64 1. {{formula}}\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}{{/formula}} 65 65 {{/aufgabe}} 66 66 67 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4 " quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 68 -(% style="list-style: alphastyle" %) 69 -1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 70 -[[image:Taschenrechnerdisplay.png||width="100"]] 71 -1. Ermittle die Ausgabe des Taschenrechners in wissenschaftlicher Schreibweise. 72 -[[image:Taschenrechnerdisplay_1.png||width="100"]] 73 -[[image:Taschenrechnerdisplay_2.png||width="100"]] 74 -{{/aufgabe}} 75 - 76 76 {{aufgabe id="Normdarstellungen und Namen großer Zahlen mit Zehnerpotenzen" afb="II" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 77 77 i) Begründe, ob die Zahlen in a) und b) in Normdarstellung angegeben sind. 78 78 Verbessere gegebenenfalls. ... ... @@ -85,7 +85,51 @@ 85 85 86 86 {{/aufgabe}} 87 87 79 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Was ist größer" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 80 +Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen: 88 88 82 +{{formula}}7 \cdot 10^{-5}{{/formula}}, 83 +{{formula}}1 \cdot 10^{2}{{/formula}}, 84 +{{formula}}1 \cdot 10^{-10}{{/formula}} 89 89 86 +Außerdem passen folgende Beispiele zu den gegebenen Größen: 87 +Länge eines Fußballfeldes 88 +Durchmesser eines Atoms 89 +Dicke eines menschlichen Haares 90 + 91 +a) Ordne die gegebenen Zahlen der Größe nach (von klein nach groß) und ordne sie gleichzeitig dem jeweils passenden Beispiel begründet zu. 92 + 93 +b) Erläutere, warum die Darstellung mit Zehnerpotenzen besonders geeignet ist, um sehr große und sehr kleine Größen miteinander zu vergleichen. 94 + 95 + 96 + 97 +{{/aufgabe}} 98 + 99 + 100 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 101 +(% style="list-style: alphastyle" %) 102 +1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 103 +[[image:Taschenrechnerdisplay.png||width="100"]] 104 +1. Ermittle die Ausgabe des Taschenrechners in wissenschaftlicher Schreibweise. 105 +[[image:Taschenrechnerdisplay_1.png||width="100"]] 106 +[[image:Taschenrechnerdisplay_2.png||width="100"]] 107 +{{/aufgabe}} 108 + 109 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Maßeinheiten" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}} 110 +Ordne die Zahlen der folgenden Szenarien der richtigen Maßeinheit mit Normdarstellung zu. 111 +{{/aufgabe}} 112 + 113 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Darstellungwechsel" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}} 114 +Gegeben ist die Zahl {{formula}} 0,0004 {{/formula}} 115 + 116 +i) Stelle die Zahl jeweils in den folgenden Darstellungsformen dar: 117 +a) als vollständig gekürzter Bruch 118 +b) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}} 119 +c) als Zehnerpotenz 120 +d) als Zahl in Normdarstellung 121 + 122 +ii) Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein. 123 +{{/aufgabe}} 124 + 90 90 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 91 91