BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung

Version 81.1 von Sarah Könings am 2025/09/30 13:55

Inhalt

K4 K5 Ich kann Potenzen mit rationalen Exponenten in Wurzelausdrücke umwandeln und umgekehrt.
K4 K5 Ich kann Potenzen mit negativen Exponenten in Bruchausdrücke umwandeln und umgekehrt.
K4 K5 Ich kann Zahlen in Normdarstellung angeben.
K4 K5 Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen.

Gib in Wurzelschreibweise an und berechne.

  1. \(81^{\frac{1}{2}}\)
  2. \(8^{\frac{1}{3}}\)
  3. \(0,0016^{\frac{1}{4}}\)
  4. \(a^{\frac{8}{3}}\)
AFB I - K6 K5Quelle Böhringer, Hauptmann,Könings
Links   KMap Termbaum

Gib in Potenzschreibweise an und berechne wenn möglich.

  1. \(\sqrt{3^5}\)
  2. \(\sqrt[4]{9^2}\)
  3. \(\sqrt[a]{b^c}\)
AFB I - K6 K5Quelle Böhringer, Hauptmann,Könings
Links   KMap Termbaum

Fülle die Lücken aus:

  1. \(a^{\frac{\square}{4}}=\sqrt[\square]{a^5}\)
  2. \(\sqrt[5]{b^{\frac{\square}{2}}}= b^{\frac{3}{10}}\)
  3. \(\sqrt[\square]{c^{\frac{4}{5}}}= c^{\frac{4}{15}}\)
  4. \(\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}\)
AFB I - K5Quelle Böhringer, Hauptmann,Könings

Fülle die Lücken und führe fort .

 \(\square\)  \(3^2\)  \(3^1\)  \(3^0\)  \(3^{-1}\)  \(3^{-2}\)  \(\square\)
 27  9  3  \(\square\)   \(\square\) \(\square\) \(\square\)
AFB I - K5Quelle Böhringer, Hauptmann,Könings

Kompetenzmatrix und Seitenreflexion

K1K2K3K4K5K6
I000042
II000000
III000000
Bearbeitungszeit gesamt: 7 min
Abdeckung Bildungsplan
Abdeckung Kompetenzen
Abdeckung Anforderungsbereiche
Eignung gemäß Kriterien
Umfang gemäß Mengengerüst