BPE 12.2 Potenzgesetze

Version 6.1 von Holger Engels am 2025/10/04 15:00

Inhalt

K6 K5 Ich kann die Rechengesetze für das Multiplizieren begründen.
K5 Ich kann Dividieren und Potenzieren von Potenzen mit ganzzahligen Exponenten.
K5 Ich kann die Potenzgesetze anwenden.

Gib die richtige Vereinfachung des Terms an:
\( (2^3)^2 \)

  ☐ \( 2^5 \)
  ☐ \( 2^6 \)
  ☐ \( 2^9 \)

AFB   IKompetenzen   K5Bearbeitungszeit   1 min
Quelle   KMapLizenz   CC BY-SA

Bestimme die einfachste Form der folgenden Terme:

  1. \( 6b^3 : 3b^3 \)
  2. \( \frac{x^m}{x^{m-3}} \)
AFB   IKompetenzen   K5Bearbeitungszeit   3 min
Quelle   KMapLizenz   CC BY-SA

Potenzen

Gib an, welche Vereinfachung richtig ist.
\( 2x^2 \cdot x^3 \)

  ☐ \( 2x^5 \)
  ☐ \( 2x^6 \)
  ☐ kann man nicht vereinfachen, weil die Exponenten unterschiedlich sind

AFB   IKompetenzen   K5Bearbeitungszeit   1 min
Quelle   KMapLizenz   CC BY-SA

Nenne die Potenzschreibweise von \( \frac{1}{8} \).

AFB   IKompetenzen   K5Bearbeitungszeit   1 min
Quelle   KMapLizenz   CC BY-SA

Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.

Term Auswahlmöglichkeiten Lösungsfeld
1) \(2x^2 + x^2\)  a) \(3x^4\)
 b) \(2x^4\)
 c) \(3x^2\) 
 
2) \((-1)^2 + (5x)^0 + 3^0\)  a) \(6x+4\)
 b) \(1\)
 c) \(3\) 
 
3) \(3^{2x} \cdot 3^x\)  a) \(3^{2x^2}\)
 b) \(3^{3x}\)
 c) \(9^{2x^2}\) 
 
4) \((5b^2)^8\)  a) \(5b^6\)
 b) \(125b^6\)
 c) \(125b^5\) 
 
5) \(5 \cdot 3^x - 3^x\)  a) \(4 \cdot 3^x\)
 b) \(12^x\)
 c) \(5\) 
 
6) \(ab^2 : ab\)  a) \(b^3\)
 b) \(b\)
 c) \(a^2b^2\) 
 
7) \(2x^2y + 3xy^2 + 5xy^2 - 7x^2y\)  a) \(3x^2y^3\)
 b) \(8xy^2 - 5x^2y\)
 c) \(3x^2y^2\) 
 
8) \(10^x : 10^x\)  a) \(10^{2x}\)
 b) \(1\)
 c) \(10\) 

#mathebrücke

AFB   IKompetenzen   k.A.Bearbeitungszeit   k.A.
Quelle   Team MathebrückeLizenz   CC BY-SA

Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben.
Welcher der angegebenen Terme stellt die richtige Umformung dar?
Erläutere bei a), welche Fehler gemacht wurden. 

  1. Löse die Klammer auf:
    1. \((5ab)^3\)
    2. \(5a^3b^3\)
    3. \(125a^3b\)
    4. \(125a^3b^3\)
    5. \(15a^3b^3\)
    6. \(5ab^3\)
  2. Vereinfache soweit wie möglich:
    1. \(v^6:v^{n-6}\)
    2. \(v^{-n}\)
    3. \(v^{n+12}\)
    4. \(v^{-1+n}\)
    5. \(v^{12-n}\)
    6. \(v^{n-12}\)

#mathebrücke

AFB   IKompetenzen   K5 K6Bearbeitungszeit   5 min
Quelle   Team MathebrückeLizenz   CC BY-SA

Tim überlegt: Wenn \(2^{-1}\) dasselbe ist wie  \(\frac{1}{2}\), dann ist doch \(3^{-2}\) dasselbe wie \(\frac{2}{3}\).
Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach \(10^{-2}\)?
Begründe, ob Tim Recht hat.

#mathebrücke

AFB   IIIKompetenzen   k.A.Bearbeitungszeit   k.A.
Quelle   Team MathebrückeLizenz   CC BY-SA
  1. Fasse zusammen:
    1. \(3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3\)
    2. \(2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x\)
    3. \(2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1\)
  2. Wende die Potenzgesetze an:
    1. \(a^2 \cdot a^4 + b \cdot b^5\)
    2. \(-10a^2 + 2a(a+2)\)
    3. \(y^3 \cdot (-x)^3\)
    4. \(\left(\frac{x}{3}\right)^4 \cdot 3^4\)
    5. \(\frac{b^{n+2}}{b^n}\)
    6. \(\frac{(2x)^5}{(2x)^{a+5}}\)
    7. \(\frac{2^3}{\left(\frac{1}{2}\right)^3}\)
    8. \(\frac{(-2x)^4}{(-y)^4}\)
    9. \((-2y)^3\)
    10. \((5a^3b^2)^3\)

#mathebrücke

AFB   IKompetenzen   K5Bearbeitungszeit   8 min
Quelle   Team MathebrückeLizenz   CC BY-SA

Kompetenzmatrix und Seitenreflexion

K1K2K3K4K5K6
I000061
II000000
III000000
Bearbeitungszeit gesamt: 15 min
Abdeckung Bildungsplan
Abdeckung Kompetenzen
Abdeckung Anforderungsbereiche
Eignung gemäß Kriterien
Umfang gemäß Mengengerüst