Änderungen von Dokument Lösung Termumformungen
Zuletzt geändert von akukin am 2025/11/17 09:57
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Übergeordnete Seite
-
... ... @@ -1,1 +1,1 @@ 1 -Klasse 8.BPE_1 _1.WebHome1 +Klasse 8.BPE_1.WebHome - Inhalt
-
... ... @@ -1,62 +1,61 @@ 1 1 Vereinfache: 2 -1.a) 3 - 2 +1.a)((( 4 4 {{formula}} 5 -\begin{align} 6 -&\ textcolor{blue!50!black}{2(4a - 5) - 3(2a - 3) + 4(-3a + 5)} \\4 +\begin{align*} 5 +&\color{blue}{2(4a - 5) - 3(2a - 3) + 4(-3a + 5)} \\ 7 7 &= 8a - 10 - 6a + 9 - 12a + 20 = \textbf{-10a + 19} 8 -\end{align} 7 +\end{align*} 9 9 {{/formula}} 10 - 9 +))) 11 11 1.b) 12 12 13 13 {{formula}} 14 -\begin{align} 15 -&\ textcolor{blue!50!black}{x - (x + 3) - 4(-x + 1)}\\13 +\begin{align*} 14 +&\color{blue}{x - (x + 3) - 4(-x + 1)}\\ 16 16 &= x - x - 3 + 4x - 4 = \textbf{4x - 7} 17 -\end{align} 16 +\end{align*} 18 18 {{/formula}} 19 19 20 20 2.a) 21 21 22 22 {{formula}} 23 -\begin{align} 24 -&\ textcolor{blue!50!black}{6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a)}\\22 +\begin{align*} 23 +&\color{blue}{6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a)}\\ 25 25 &= 6a - 2(7b - 4a - 3b) + 2(2a - b - 7a) \\ 26 26 &= 6a - 14b + 8a + 6b + 4a - 2b - 14a = \textbf{4a - 10b} 27 -\end{align} 26 +\end{align*} 28 28 {{/formula}} 29 29 30 30 2.b) 31 31 32 32 {{formula}} 33 -\begin{align} 34 -&\ textcolor{blue!50!black}{2x + 3(4 - (2x + 1) + 3x)}\\32 +\begin{align*} 33 +&\color{blue}{2x + 3(4 - (2x + 1) + 3x)}\\ 35 35 &= 2x + 3(4 - 2x - 1 + 3x)\\ 36 36 &= 2x + 3(3 + x) = 2x + 9 + 3x = \textbf{5x + 9} 37 -\end{align} 36 +\end{align*} 38 38 {{/formula}} 39 39 40 40 Multipliziere aus: 41 41 42 -3.a) {{formula}}\ textcolor{blue!50!black}{(3a + b)(a - 5b)} = \mathbf{3a^2 - 14ab - 5b^2}{{/formula}}41 +3.a) {{formula}}\color{blue}{(3a + b)(a - 5b)} = \mathbf{3a^2 - 14ab - 5b^2}{{/formula}} 43 43 3.b) {{formula}}(4x - 3)(-x + \frac{1}{3})= \mathbf{-4x^2 + \frac{13}{3}x - 1}{{/formula}} 44 44 45 -4.a) {{formula}}\ textcolor{blue!50!black}{(2x + y)^2}= \mathbf{4x^2 + 4xy + y^2}{{/formula}}46 -4.b) {{formula}}\ textcolor{blue!50!black}{(x - 3y)^2}= \mathbf{x^2 - 6xy + 9y^2}{{/formula}}47 -4.c) {{formula}}\ textcolor{blue!50!black}{(x^2 - 2)(x^2 + 2)}= \mathbf{x^4 - 4}{{/formula}}44 +4.a) {{formula}}\color{blue}{(2x + y)^2}= \mathbf{4x^2 + 4xy + y^2}{{/formula}} 45 +4.b) {{formula}}\color{blue}{(x - 3y)^2}= \mathbf{x^2 - 6xy + 9y^2}{{/formula}} 46 +4.c) {{formula}}\color{blue}{(x^2 - 2)(x^2 + 2)}= \mathbf{x^4 - 4}{{/formula}} 48 48 4.d) 49 49 50 50 {{formula}} 51 -\begin{align} 52 -&\ textcolor{blue!50!black}{(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1)}\\50 +\begin{align*} 51 +&\color{blue}{(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1)}\\ 53 53 &= (9 - 6x + x^2) - (x^2 + 2x + 1) + 2(x^2 - 1)\\ 54 54 &= 9 - 6x + x^2 - x^2 - 2x - 1 + 2x^2 - 2 = \mathbf{2x^2 - 8x + 6} 55 -\end{align} 54 +\end{align*} 56 56 {{/formula}} 57 57 58 58 Faktorisiere: 59 59 60 -5.a) {{formula}}\ textcolor{blue!50!black}{12ax^2 - 8ax}= \mathbf{4ax(3x - 2)}{{/formula}}61 -5.b) {{formula}}\ textcolor{blue!50!black}{3x^2 - 12}= 3(x^2 - 4) = \mathbf{3(x - 2)(x + 2)}{{/formula}}62 -5.c) {{formula}}\ textcolor{blue!50!black}{\frac{3ax^2 - 3a}{9x + 9}}= \frac{3a(x^2 - 1)}{9(x + 1)} = \frac{3a(x - 1)(x + 1)}{9(x + 1)} = \mathbf{\frac{a(x - 1)}{3}}{{/formula}}59 +5.a) {{formula}}\color{blue}{12ax^2 - 8ax}= \mathbf{4ax(3x - 2)}{{/formula}} 60 +5.b) {{formula}}\color{blue}{3x^2 - 12}= 3(x^2 - 4) = \mathbf{3(x - 2)(x + 2)}{{/formula}} 61 +5.c) {{formula}}\color{blue}{\frac{3ax^2 - 3a}{9x + 9}}= \frac{3a(x^2 - 1)}{9(x + 1)} = \frac{a(x - 1)(x + 1)}{3(x + 1)} = \mathbf{\frac{a(x - 1)}{3}}{{/formula}}