Änderungen von Dokument Lösung Termumformungen
Zuletzt geändert von akukin am 2025/11/17 09:57
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,61 +1,62 @@ 1 1 Vereinfache: 2 -1.a)((( 2 +1.a) 3 + 3 3 {{formula}} 4 -\begin{align *}5 -&\color{blue}{2(4a - 5) - 3(2a - 3) + 4(-3a + 5)} \\ 5 +\begin{align} 6 +&\textcolor{blue!50!black}{2(4a - 5) - 3(2a - 3) + 4(-3a + 5)} \\ 6 6 &= 8a - 10 - 6a + 9 - 12a + 20 = \textbf{-10a + 19} 7 -\end{align *}8 +\end{align} 8 8 {{/formula}} 9 - )))10 + 10 10 1.b) 11 11 12 12 {{formula}} 13 -\begin{align *}14 -&\color{blue}{x - (x + 3) - 4(-x + 1)}\\ 14 +\begin{align} 15 +&\textcolor{blue!50!black}{x - (x + 3) - 4(-x + 1)}\\ 15 15 &= x - x - 3 + 4x - 4 = \textbf{4x - 7} 16 -\end{align *}17 +\end{align} 17 17 {{/formula}} 18 18 19 19 2.a) 20 20 21 21 {{formula}} 22 -\begin{align *}23 -&\color{blue}{6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a)}\\ 23 +\begin{align} 24 +&\textcolor{blue!50!black}{6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a)}\\ 24 24 &= 6a - 2(7b - 4a - 3b) + 2(2a - b - 7a) \\ 25 25 &= 6a - 14b + 8a + 6b + 4a - 2b - 14a = \textbf{4a - 10b} 26 -\end{align *}27 +\end{align} 27 27 {{/formula}} 28 28 29 29 2.b) 30 30 31 31 {{formula}} 32 -\begin{align *}33 -&\color{blue}{2x + 3(4 - (2x + 1) + 3x)}\\ 33 +\begin{align} 34 +&\textcolor{blue!50!black}{2x + 3(4 - (2x + 1) + 3x)}\\ 34 34 &= 2x + 3(4 - 2x - 1 + 3x)\\ 35 35 &= 2x + 3(3 + x) = 2x + 9 + 3x = \textbf{5x + 9} 36 -\end{align *}37 +\end{align} 37 37 {{/formula}} 38 38 39 39 Multipliziere aus: 40 40 41 -3.a) {{formula}}\color{blue}{(3a + b)(a - 5b)} = \mathbf{3a^2 - 14ab - 5b^2}{{/formula}} 42 +3.a) {{formula}}\textcolor{blue!50!black}{(3a + b)(a - 5b)} = \mathbf{3a^2 - 14ab - 5b^2}{{/formula}} 42 42 3.b) {{formula}}(4x - 3)(-x + \frac{1}{3})= \mathbf{-4x^2 + \frac{13}{3}x - 1}{{/formula}} 43 43 44 -4.a) {{formula}}\color{blue}{(2x + y)^2}= \mathbf{4x^2 + 4xy + y^2}{{/formula}} 45 -4.b) {{formula}}\color{blue}{(x - 3y)^2}= \mathbf{x^2 - 6xy + 9y^2}{{/formula}} 46 -4.c) {{formula}}\color{blue}{(x^2 - 2)(x^2 + 2)}= \mathbf{x^4 - 4}{{/formula}} 45 +4.a) {{formula}}\textcolor{blue!50!black}{(2x + y)^2}= \mathbf{4x^2 + 4xy + y^2}{{/formula}} 46 +4.b) {{formula}}\textcolor{blue!50!black}{(x - 3y)^2}= \mathbf{x^2 - 6xy + 9y^2}{{/formula}} 47 +4.c) {{formula}}\textcolor{blue!50!black}{(x^2 - 2)(x^2 + 2)}= \mathbf{x^4 - 4}{{/formula}} 47 47 4.d) 48 48 49 49 {{formula}} 50 -\begin{align *}51 -&\color{blue}{(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1)}\\ 51 +\begin{align} 52 +&\textcolor{blue!50!black}{(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1)}\\ 52 52 &= (9 - 6x + x^2) - (x^2 + 2x + 1) + 2(x^2 - 1)\\ 53 53 &= 9 - 6x + x^2 - x^2 - 2x - 1 + 2x^2 - 2 = \mathbf{2x^2 - 8x + 6} 54 -\end{align *}55 +\end{align} 55 55 {{/formula}} 56 56 57 57 Faktorisiere: 58 58 59 -5.a) {{formula}}\color{blue}{12ax^2 - 8ax}= \mathbf{4ax(3x - 2)}{{/formula}} 60 -5.b) {{formula}}\color{blue}{3x^2 - 12}= 3(x^2 - 4) = \mathbf{3(x - 2)(x + 2)}{{/formula}} 61 -5.c) {{formula}}\color{blue}{\frac{3ax^2 - 3a}{9x + 9}}= \frac{3a(x^2 - 1)}{9(x + 1)} = \frac{a(x - 1)(x + 1)}{3(x + 1)} = \mathbf{\frac{a(x - 1)}{3}}{{/formula}} 60 +5.a) {{formula}}\textcolor{blue!50!black}{12ax^2 - 8ax}= \mathbf{4ax(3x - 2)}{{/formula}} 61 +5.b) {{formula}}\textcolor{blue!50!black}{3x^2 - 12}= 3(x^2 - 4) = \mathbf{3(x - 2)(x + 2)}{{/formula}} 62 +5.c) {{formula}}\textcolor{blue!50!black}{\frac{3ax^2 - 3a}{9x + 9}}= \frac{3a(x^2 - 1)}{9(x + 1)} = \frac{a(x - 1)(x + 1)}{3(x + 1)} = \mathbf{\frac{a(x - 1)}{3}}{{/formula}}