Änderungen von Dokument BPE 1.1 Rechnen mit Termen

Zuletzt geändert von Holger Engels am 2025/08/11 19:10

Von Version 30.1
bearbeitet von akukin
am 2025/07/12 16:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von akukin
am 2025/07/08 17:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -143,193 +143,15 @@
143 143  {{aufgabe id="Was gehört zusammen?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
144 144  Ordne die Sachverhalte in der linken Spalte den Termen in der rechten Spalte zu:
145 145  
146 -(%class="border%)
147 -|Zwei Strohhalme unterscheiden sich um 5cm. Der längere hat die Länge x. \\ Wenn man die Strohhalme hintereinander legt, haben sie eine Gesamtlänge von 60cm.|{{formula}}(x+5) + x = 60{{/formula}}
146 +(% style="width:80%;" class="border" %)
147 +|Zwei Strohhalme unterscheiden sich um 5cm. Der längere hat die Länge x. \\Wenn man die Strohhalme hintereinander legt, haben sie eine Gesamtlänge von 60cm.| {{formula}}(x+5) + x = 60{{/formula}}
148 148  |x ist das Alter von Kurt. Hanne ist 5 Jahre älter. Zusammen sind sie 60 Jahre alt.|{{formula}} x \cdot \frac{3}{100}=60{{/formula}}
149 149  |Herr Müller erhält bei einem Guthaben von x € Zinsen in Höhe von 60€. \\Der Zinssatz beträgt 3%.|{{formula}}(x+12)(x-5) = 60{{/formula}}
150 150  |Eine Seite eines Quadrates wird um 12cm verlängert, die andere um 5cm verkürzt. \\Der Flächeninhalt der neuen Figur beträgt 60cm².|{{formula}} x \cdot \frac{3}{100\cdot 12}=60{{/formula}}
151 151  |Auf einer 60kg schweren Palette stehen 5 gleiche Stühle. Die leere Palette wiegt 12kg.|{{formula}}(x-5) + x = 60{{/formula}}
152 152  |Für ein Guthaben von x € erhält Frau Müller 3% Zinsen. Jeden Monat sind dies 60€.|{{formula}}(x+5)x = 60{{/formula}}
153 -|Ein rechteckiges Freigehege, bei dem sich die beiden Seitenlängen um 5m \\unterscheiden, hat eine Fläche von 60m².|{{formula}}60 - 5x = 12{{/formula}}
153 +|Ein rechteckiges Freigehege, bei dem sich die beiden Seitenlängen um 5m \\unterscheiden, hat eine Fläche von 60m².| {{formula}}60 - 5x = 12{{/formula}}
154 154  |Johnny hat eine Spardose. Johnny hat 5 Schwestern. In der Spardose befinden sich 60€. \\An seine Schwestern muss er jeweils einen gleichen Geldbetrag überreichen. \\Am Schluss verbleiben ihm 12€.| {{formula}}5x + 12 =60{{/formula}}
155 155  {{/aufgabe}}
156 156  
157 -{{aufgabe id="Falsche Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
158 -Begründe jeweils anhand eines Zahlenbeispiels, dass folgende Termumformungen falsch sind. Gib, wenn es geht, die richtige Termumformung an.
159 -(%class=abc%)
160 -1. {{formula}}a-(b-c)=a-b-c{{/formula}}
161 -1. {{formula}}p\cdot (q\cdot r)= (p\cdot q)\cdot (p\cdot r){{/formula}}
162 -1. {{formula}}(a+b)^2=a^2+b^2{{/formula}}
163 -1. {{formula}}x^2\cdot y^3=(x\cdot y)^5{{/formula}}
164 -1. {{formula}}(-a)^2=-a^2{{/formula}}
165 -1. {{formula}}\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}{{/formula}}
166 -1. {{formula}}\sqrt{p^2+q^2}=p+q{{/formula}}
167 -1. {{formula}}\sqrt{x^2}=x{{/formula}}
168 -
169 -Gibt es Zahlenbeispiele, für die die obigen Umformungen zufällig richtig sind?
170 -
171 -{{/aufgabe}}
172 -
173 -{{aufgabe id="Zuordnungsaufgabe Ausklammern/Faktorisieren" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
174 -Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.
175 -(%class="border%)
176 -|Term |Auswahlmöglichkeiten |Lösungsfeld
177 -|1) {{formula}}3x^2 - 2x{{/formula}} | a) {{formula}}x(3x-2){{/formula}} \\ b) {{formula}}3x{{/formula}} \\ c) {{formula}}3x(x-2){{/formula}} |
178 -|2) {{formula}}2x^2 - 8{{/formula}} | a) {{formula}}2(x+2)(x-2){{/formula}} \\ b) {{formula}}2(x-2)^2{{/formula}} \\ c) {{formula}}2x(x-2){{/formula}} |
179 -|3) {{formula}}\frac{x^2 - 9}{x + 3}{{/formula}} | a) {{formula}}x - 3{{/formula}} \\ b) {{formula}}x{{/formula}} \\ c) {{formula}}x + 3{{/formula}} |
180 -|4) {{formula}}x^3 + 2x^2{{/formula}} | a) {{formula}}2x^5{{/formula}} \\ b) {{formula}}2x^6{{/formula}} \\ c) {{formula}}x^2(x+2){{/formula}} |
181 -|5) {{formula}}5x^2 - 10x + 5{{/formula}} | a) {{formula}}5(x+1)^2{{/formula}} \\ b) {{formula}}5(x-1)^2{{/formula}} \\ c) {{formula}}5(x-1)(x+1){{/formula}} |
182 -{{/aufgabe}}
183 -
184 -{{aufgabe id="Zuordnungsaufgabe Binome" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
185 -Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.
186 -(%class="border"%)
187 -|Term |Auswahlmöglichkeiten |Lösungsfeld
188 -|1) {{formula}}x^2 - 4{{/formula}} | a) {{formula}}(x + 2)(x + 2){{/formula}} \\ b) {{formula}}(x - 4)(x + 4){{/formula}} \\ c) {{formula}}(x + 2)(x - 2){{/formula}} |
189 -|2) {{formula}}(x - 2)^2{{/formula}} | a) {{formula}}x^2 - 4x + 4{{/formula}} \\ b) {{formula}}x^2 + 4x + 4{{/formula}} \\ c) {{formula}}x^2 - 2x + 4{{/formula}} |
190 -|3) {{formula}}(x - 3)(x + 3){{/formula}} | a) {{formula}}x^2 + 9{{/formula}} \\ b) {{formula}}x^2 - 9{{/formula}} \\ c) {{formula}}(x - 3)^2{{/formula}} |
191 -|4) {{formula}}(x + 1)^2{{/formula}} | a) {{formula}}x^2 + 2x + 2{{/formula}} \\ b) {{formula}}x^2 + 1{{/formula}} \\ c) {{formula}}(x + 1)(x + 1){{/formula}} |
192 -|5) {{formula}}(2x - 4)^2{{/formula}} | a) {{formula}}2x^2 - 8x + 16{{/formula}} \\ b) {{formula}}(2x - 4)(2x + 4){{/formula}} \\ c) {{formula}}4x^2 - 16x + 16{{/formula}} |
193 -|6) {{formula}}16x^2 - 25{{/formula}} | a) {{formula}}(8x - 5)(8x + 5){{/formula}} \\ b) {{formula}}(4x - 5)(4x - 5){{/formula}} \\ c) {{formula}}(4x + 5)(4x - 5){{/formula}} |
194 -|7) {{formula}}(0,\!5x - 1)(0,\!5x - 1){{/formula}} | a) {{formula}}0,\!25x^2 - 1{{/formula}} \\ b) {{formula}}0,\!25x^2 - x + 1{{/formula}} \\ c) {{formula}}(0,\!5x + 1)^2{{/formula}} |
195 -{{/aufgabe}}
196 -
197 -{{aufgabe id="Zuordnungsaufgabe Potenzgesetze" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
198 -Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein.
199 -(%class="border"%)
200 -|Term |Auswahlmöglichkeiten |Lösungsfeld
201 -|1) {{formula}}2x^2 + x^2{{/formula}} | a) {{formula}}3x^4{{/formula}} \\ b) {{formula}}2x^4{{/formula}} \\ c) {{formula}}3x^2{{/formula}} |
202 -|2) {{formula}}(-1)^2 + (5x)^0 + 3^0{{/formula}} | a) {{formula}}6x+4{{/formula}} \\ b) {{formula}}1{{/formula}} \\ c) {{formula}}3{{/formula}} |
203 -|3) {{formula}}3^{2x} \cdot 3^x{{/formula}} | a) {{formula}}3^{2x^2}{{/formula}} \\ b) {{formula}}3^{3x}{{/formula}} \\ c) {{formula}}9^{2x^2}{{/formula}} |
204 -|4) {{formula}}(5b^2)^8{{/formula}} | a) {{formula}}5b^6{{/formula}} \\ b) {{formula}}125b^6{{/formula}} \\ c) {{formula}}125b^5{{/formula}} |
205 -|5) {{formula}}5 \cdot 3^x - 3^x{{/formula}} | a) {{formula}}4 \cdot 3^x{{/formula}} \\ b) {{formula}}12^x{{/formula}} \\ c) {{formula}}5{{/formula}} |
206 -|6) {{formula}}ab^2 : ab{{/formula}} | a) {{formula}}b^3{{/formula}} \\ b) {{formula}}b{{/formula}} \\ c) {{formula}}a^2b^2{{/formula}} |
207 -|7) {{formula}}2x^2y + 3xy^2 + 5xy^2 - 7x^2y{{/formula}} | a) {{formula}}3x^2y^3{{/formula}} \\ b) {{formula}}8xy^2 - 5x^2y{{/formula}} \\ c) {{formula}}3x^2y^2{{/formula}} |
208 -|8) {{formula}}10^x : 10^x{{/formula}} | a) {{formula}}10^{2x}{{/formula}} \\ b) {{formula}}1{{/formula}} \\ c) {{formula}}10{{/formula}} |
209 -{{/aufgabe}}
210 -
211 -{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
212 -Trage jeweils ein, welche Werte für die Symbole eingesetzt werden müssen, so dass die Termumformung richtig ist.
213 -(%class="border"%)
214 -|a) {{formula}}(x + \square)(x - \square) = x^2 - 25{{/formula}} | {{formula}}\square={{/formula}}
215 -|b) {{formula}}(2x - \square)^2 = 4x^2 - \Delta + 9{{/formula}}| {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
216 -|c) {{formula}}(x - \square)^2 = x^2 - 4xy + \Delta{{/formula}}| {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
217 -|d) {{formula}}(2z - \square)^2 =\heartsuit -8z + \Delta{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}} {{formula}}\heartsuit={{/formula}}
218 -|e) {{formula}}(4x - \square)(4x + \square) = \Delta - 49y^2{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
219 -{{/aufgabe}}
220 -
221 -{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
222 -Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben.
223 -Welcher der angegebenen Terme stellt die richtige Umformung dar?
224 -Erläutere bei a), welche Fehler gemacht wurden.
225 -(%class=abc%)
226 -1. Löse die Klammer auf: {{formula}}(5ab)^3{{/formula}}
227 -11. {{formula}}5a^3b^3{{/formula}}
228 -11. {{formula}}125a^3b{{/formula}}
229 -11. {{formula}}125a^3b^3{{/formula}}
230 -11. {{formula}}15a^3b^3{{/formula}}
231 -11. {{formula}}5ab^3{{/formula}}
232 -1. Vereinfache soweit wie möglich: {{formula}}v^6:v^{n-6}{{/formula}}
233 -11. {{formula}}v^{-n}{{/formula}}
234 -11. {{formula}}v^{n+12}{{/formula}}
235 -11. {{formula}}v^{-1+n}{{/formula}}
236 -11. {{formula}}v^{12-n}{{/formula}}
237 -11. {{formula}}v^{n-12}{{/formula}}
238 -{{/aufgabe}}
239 -
240 -{{aufgabe id="Potenzen mit negativen Exponenten" afb="III" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
241 -Tim überlegt: Wenn {{formula}}2^{-1}{{/formula}} dasselbe ist wie {{formula}}\frac{1}{2}{{/formula}}, dann ist doch {{formula}}3^{-2}{{/formula}} dasselbe wie {{formula}}\frac{2}{3}{{/formula}}.
242 -Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach {{formula}}10^{-2}{{/formula}}?
243 -Hat Tim Recht?
244 -
245 -{{/aufgabe}}
246 -
247 -{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
248 -Fasse zusammen:
249 -1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}}
250 -1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}}
251 -1.c) {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}}
252 -
253 -Wende die Potenzgesetze an:
254 -2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}}
255 -
256 -2.b) {{formula}}-10a^2 + 2a(a+2){{/formula}}
257 -
258 -2.c) {{formula}}y^3 \cdot (-x)^3{{/formula}}
259 -
260 -2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}}
261 -
262 -2.e) {{formula}}\frac{b^{n+2}}{b^n}{{/formula}}
263 -
264 -2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}}
265 -
266 -2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}}
267 -
268 -2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}}
269 -
270 -2.i) {{formula}}(-2y)^3{{/formula}}
271 -
272 -2.j) {{formula}}(5a^3b^2)^3{{/formula}}
273 -
274 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)(((
275 -**Merke:**
276 -1. Bei Addition und Subtraktion:
277 -Man darf nur Potenzen zusammenfassen, die die gleiche Basis und den gleichen Exponenten haben. Hierbei gilt immer: __Potenzrechnung vor Punktrechnung vor Strichrechnung!__
278 -1. Bei Multiplikation und Division:
279 - 1) {{formula}}a^n \cdot a^m = a^{n+m}{{/formula}}
280 - 2) {{formula}}a^n \cdot b^n = (a \cdot b)^n{{/formula}}
281 - 3) {{formula}}\frac{a^n}{a^m} = a^{n-m}{{/formula}}
282 - 4) {{formula}}\frac{a^n}{b^n} = (\frac{a}{b})^n{{/formula}}
283 - 5) {{formula}}(a^n)^m = a^{n \cdot m}{{/formula}}
284 -1. Beachte außerdem:
285 - 1) Bei ungerader Hochzahl und negativer Basis bleibt das Minuszeichen erhalten,
286 - Bsp. {{formula}}(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27{{/formula}}
287 - 2) Bei gerader Hochzahl und negativer Basis fällt das Minuszeichen weg,
288 - Bsp. {{formula}}(-3)^2 = (-3) \cdot (-3) = 9{{/formula}}
289 - 3) Unterscheide: {{formula}}-(-2)^2 = -(2)^2= -4{{/formula}}
290 - {{formula}}(-2)^2 = (-2)(-2) = 4{{/formula}})))
291 -{{/aufgabe}}
292 -
293 -{{aufgabe id="Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
294 -Löse die Klammern auf und fasse zusammen („vereinfache“):
295 -1.a) {{formula}}2(4a - 5) - 3(2a - 3) + 4(-3a + 5){{/formula}}
296 -1.b) {{formula}}x - (x + 3) - 4(-x + 1){{/formula}}
297 -
298 -2.a) {{formula}}6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a){{/formula}}
299 -2.b) {{formula}}2x + 3(4 - (2x + 1) + 3x){{/formula}}
300 -
301 -Multipliziere aus und vereinfache:
302 -3.a) {{formula}}(3a + b)(a - 5b){{/formula}}
303 -3.b) {{formula}}(4x - 3)(-x + \frac{1}{3}){{/formula}}
304 -
305 -4.a) {{formula}}(2x + y)^2{{/formula}}
306 -4.b) {{formula}}(x - 3y)^2{{/formula}}
307 -4.c) {{formula}}(x^2 - 2)(x^2 + 2){{/formula}}
308 -4.d) {{formula}}(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1){{/formula}}
309 -
310 -Klammere aus („Faktorisiere“):
311 -5.a) {{formula}}12ax^2 - 8ax{{/formula}}
312 -5.b) {{formula}}3x^2 - 12{{/formula}}
313 -5.c) {{formula}}\frac{3ax^2 - 3a}{9x + 9}{{/formula}}
314 -
315 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)(((
316 -**Merke:**
317 -1) **Vorzeichenregeln**
318 - Plus mal Plus ist Plus.
319 - Minus mal Plus ist Minus.
320 - Plus mal Minus ist Minus.
321 - Minus mal Minus ist Plus.
322 -2) **Rechnen mit Klammern**
323 -Geschickt ist es, zuerst die innere Klammer und dann die äußere aufzulösen.
324 -3) **Multiplikation von Klammern**
325 - {{formula}}(a+b)(m+n) = am+an+bm+bn{{/formula}}
326 -4) **Binomische Formeln**
327 - {{formula}}(a + b)^2 = a^2 + 2ab + b^2{{/formula}}
328 - {{formula}}(a - b)^2 = a^2 - 2ab + b^2{{/formula}}
329 - {{formula}}(a + b)(a - b) = a^2 - b^2{{/formula}}
330 -5) **Ausklammern**
331 - Klammere gemeinsame Faktoren aus und wende wenn möglich die binomischen Formeln an. )))
332 -
333 -{{/aufgabe}}
334 -
335 335  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}