Änderungen von Dokument BPE 2.1 Äquivalenzumformungen
Zuletzt geändert von Martina Wagner am 2025/11/27 09:27
Von Version 30.1
bearbeitet von Stephanie Wietzorek
am 2025/11/17 14:41
am 2025/11/17 14:41
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 41.1
bearbeitet von Stephanie Wietzorek
am 2025/11/18 07:47
am 2025/11/18 07:47
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -53,6 +53,16 @@ 53 53 | 9) {{formula}}3 + \frac{1}{2}b + \frac{1}{3}b - 2b = 4 + \frac{1}{6}b{{/formula}} | L = 54 54 {{/aufgabe}} 55 55 56 +{{aufgabe id="Lösungsvielfalt?" afb="III" quelle="Simone Kanzler, Stephanie WIetzorek" kompetenzen="K1, K6" zeit="" cc="by-sa"}} 57 + 58 +Es ist folgende Gleichung gegeben: 59 + 60 +{{formula}} x \cdot (2x - ❤️️)=2x^2 + 3x {{/formula}} 61 + 62 +Für ❤️️ darf eine beliebige reelle Zahl eingesetzt werden. Begründe, dass die Gleichung immer lösbar ist und gehe auf die Anzahl an Lösungen ein. 63 + 64 +{{/aufgabe}} 65 + 56 56 {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K6" zeit="" cc="by-sa" tags="mathebrücke"}} 57 57 58 58 Gib an, welche der folgenden Aussagen wahr sind. Begründe deine Entscheidung. ... ... @@ -128,8 +128,35 @@ 128 128 129 129 {{formula}} \frac{3x + ☐}{x+1}=1{{/formula}} 130 130 141 +{{/aufgabe}} 142 + 143 +== Formeln == 144 + 145 +{{aufgabe id="Geschwindigkeit" afb="I" kompetenzen="K2, K5" zeit="3" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 146 +Die Geschwindigkeit {{formula}} V {{/formula}} kann mit der Formel {{formula}} V = \frac{s}{t} {{/formula}} berechnet werden, wobei {{formula}} s {{/formula}} die zurückgelegte Strecke und {{formula}} t {{/formula}} die vergangene Zeit ist. 147 +Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um. 148 +{{/aufgabe}} 149 + 150 +{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 151 +Ein Trapez ist ein besonderes Viereck mit zwei parallelen Seiten, welche den Abstand {{formula}} h{{/formula}} voneinander besitzen. Die längere der parallelen Seiten soll mit {{formula}} a {{/formula}}, die kürzere mit {{formula}} c {{/formula}} bezeichnet werden. 152 +[[image:Trapez.png||style="float:right;width:400px"]] 153 + (%class="abc"%) 154 + 1. Beschrifte das Trapez gemäß der obigen Angaben mit den Parametern {{formula}} a {{/formula}},{{formula}} c {{/formula}} und{{formula}} h {{/formula}}. 155 + 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stelle diese Formel für {{formula}} A {{/formula}} auf. 156 + 1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann. 157 + 1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um. 131 131 132 132 {{/aufgabe}} 133 133 161 +{{aufgabe id="Bremsweg" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 162 +Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt. 163 +In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt. 164 +In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{V^2}{2a} {{/formula}} berechnen, wobei {{formula}} V {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}. 165 + (%class="abc"%) 166 +1. Berechne den Bremsweg in Metern mit der Formel aus der Fahrschule für eine Geschwindigkeit von {{formula}} 50 \frac{km}{h}{{/formula}} zum Zeitpunkt des Bremsvorgangs. 167 +1. Berechne den Bremsweg mit der Formel aus der Physik für die selbe Geschwindigkeit zum Zeitpunkt des Bremsvorgangs für {{formula}} a = 4 {{/formula}} 168 +1. Erläutere, warum sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet. 169 +{{/aufgabe}} 170 + 134 134 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 135 135
- Trapez.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +14.4 KB - Inhalt
- Trapez.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.wies - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +194.0 KB - Inhalt