Änderungen von Dokument BPE 2.1 Äquivalenzumformungen

Zuletzt geändert von Martina Wagner am 2025/11/27 09:27

Von Version 65.1
bearbeitet von Martina Wagner
am 2025/11/25 14:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 66.1
bearbeitet von Martina Wagner
am 2025/11/25 14:37
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -144,12 +144,12 @@
144 144  Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um.
145 145  {{/aufgabe}}
146 146  
147 -{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
147 +{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="10" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
148 148  Ein Trapez ist ein besonderes Viereck mit zwei parallelen Seiten, welche den Abstand {{formula}} h{{/formula}} voneinander besitzen. Die längere der parallelen Seiten soll mit {{formula}} a {{/formula}}, die kürzere mit {{formula}} c {{/formula}} bezeichnet werden.
149 149  [[image:Trapez.png||style="float:right;width:400px"]]
150 150   (%class="abc"%)
151 151   1. Beschrifte das Trapez gemäß der obigen Angaben mit den Parametern {{formula}} a {{/formula}},{{formula}} c {{/formula}} und{{formula}} h {{/formula}}.
152 - 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stelle diese Formel für {{formula}} A {{/formula}} auf.
152 + 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Bestimme diese Formel für {{formula}} A {{/formula}}.
153 153   1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann.
154 154   1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um.
155 155  {{/aufgabe}}
... ... @@ -156,12 +156,12 @@
156 156  
157 157  {{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3, K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
158 158  Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt.
159 -In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt.
160 -In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{V^2}{2a} {{/formula}} berechnen, wobei {{formula}} V {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}.
159 +In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{v}{10}\cdot \frac{v}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt.
160 +In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{v^2}{2a} {{/formula}} berechnen, wobei {{formula}} v {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}.
161 161   (%class="abc"%)
162 162  1. Berechne den Bremsweg in Metern mit der Formel aus der Fahrschule für eine Geschwindigkeit von {{formula}} 50 \frac{km}{h}{{/formula}} zum Zeitpunkt des Bremsvorgangs.
163 163  1. Berechne den Bremsweg mit der Formel aus der Physik für die selbe Geschwindigkeit zum Zeitpunkt des Bremsvorgangs für {{formula}} a = 4 {{/formula}}
164 -1. Erläutere, warum sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.
164 +1. Zeige, dass sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.
165 165  {{/aufgabe}}
166 166  
167 167  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}