Änderungen von Dokument BPE 2.1 Äquivalenzumformungen
Zuletzt geändert von Martina Wagner am 2025/11/27 09:27
Von Version 65.1
bearbeitet von Martina Wagner
am 2025/11/25 14:28
am 2025/11/25 14:28
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 66.1
bearbeitet von Martina Wagner
am 2025/11/25 14:37
am 2025/11/25 14:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -144,12 +144,12 @@ 144 144 Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um. 145 145 {{/aufgabe}} 146 146 147 -{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 147 +{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="10" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 148 148 Ein Trapez ist ein besonderes Viereck mit zwei parallelen Seiten, welche den Abstand {{formula}} h{{/formula}} voneinander besitzen. Die längere der parallelen Seiten soll mit {{formula}} a {{/formula}}, die kürzere mit {{formula}} c {{/formula}} bezeichnet werden. 149 149 [[image:Trapez.png||style="float:right;width:400px"]] 150 150 (%class="abc"%) 151 151 1. Beschrifte das Trapez gemäß der obigen Angaben mit den Parametern {{formula}} a {{/formula}},{{formula}} c {{/formula}} und{{formula}} h {{/formula}}. 152 - 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stellediese Formel für {{formula}} A {{/formula}}auf.152 + 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Bestimme diese Formel für {{formula}} A {{/formula}}. 153 153 1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann. 154 154 1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um. 155 155 {{/aufgabe}} ... ... @@ -156,12 +156,12 @@ 156 156 157 157 {{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3, K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 158 158 Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt. 159 -In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{ V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt.160 -In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{ V^2}{2a} {{/formula}} berechnen, wobei {{formula}}V{{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}.159 +In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{v}{10}\cdot \frac{v}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt. 160 +In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{v^2}{2a} {{/formula}} berechnen, wobei {{formula}} v {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}. 161 161 (%class="abc"%) 162 162 1. Berechne den Bremsweg in Metern mit der Formel aus der Fahrschule für eine Geschwindigkeit von {{formula}} 50 \frac{km}{h}{{/formula}} zum Zeitpunkt des Bremsvorgangs. 163 163 1. Berechne den Bremsweg mit der Formel aus der Physik für die selbe Geschwindigkeit zum Zeitpunkt des Bremsvorgangs für {{formula}} a = 4 {{/formula}} 164 -1. Erläutere,warumsich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.164 +1. Zeige, dass sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet. 165 165 {{/aufgabe}} 166 166 167 167 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}