Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 82.1
bearbeitet von Martin Rathgeb
am 2025/11/17 09:57
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 18.2
bearbeitet von Dirk Tebbe
am 2025/11/05 14:11
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.dirktebbe
Inhalt
... ... @@ -7,90 +7,23 @@
7 7  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 -{{aufgabe id="Erarbeitungsaufgabe Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Martin Rathgeb, Dirk Tebbe" kompetenzen="K1,K4,K5,K6" zeit="30" cc="by-sa"}}
11 -(%class=abc%)
12 -1. (((Zeichnen, Markieren und Benennen.
13 -i. Zeichne eine Strecke AB der Länge 6 cm mit ihrem Mittelpunkt M.
14 -ii. Zeichne drei Geraden durch M. Eine dieser Geraden soll senkrecht auf AB stehen
15 - und heißt die Mittelsenkrechte m der Strecke AB.
16 -iii. Zeichne einen Kreis um A mit dem Radius 8 cm.
17 -iv. Markiere und benenne alle Schnittpunkte der drei Geraden mit dem Kreis der Reihe nach mit S₁, S₂, S₃, …
18 -v. Markiere und benenne drei weitere Punkte P₁, P₂, P₃ auf der Mittelsenkrechten m.
19 -)))
20 -1. (((Abstände messen und vergleichen.
21 -i. Miss mit dem Geodreieck für jeden Punkt Sᵢ und Pᵢ die Abstände zu A und zu B und gib die Werte tabellarisch (Kopfzeile: Punkt – Abstand zu A – Abstand zu B) an.
22 -ii. Vergleiche für alle Punkte Sᵢ die beiden Abstände miteinander. Gib an, auf welchen der drei Geraden diejenigen Punkte liegen, bei denen beide Abstände (annähernd) gleich sind.
23 -iii. Vergleiche für alle Punkte Pᵢ die beiden Abstände miteinander.
24 -)))
25 -1. (((Geometrische Orte vergleichen: Kreis (gesichert) und Mittelsenkrechte (empirisch untersucht, später beweisbar).
26 -i. Formuliere mit eigenen Worten, was mit „geometrischer Ort“ gemeint ist. Verwende dabei die Begriffe „Menge aller Punkte“, „Bedingung“ und „Erfüllen“.
27 -ii.(((Ergänze die folgenden Sätze, indem du die passenden Begriffe einsetzt
28 - (zur Auswahl stehen: „denselben Abstand“, „je gleichen Abstand“, „konstant“, „nicht konstant“):
29 - ii.1 Alle Punkte einer Kreislinie um den Punkt Z haben zu Z ...
30 - dieser Abstand bleibt für alle Punkte ...
31 - ii.2 Alle Punkte der Mittelsenkrechten zur Strecke AB haben (vermutlich) zu A und zu B ...
32 - dabei ist dieser Abstand (vermutlich) über die gesamte Gerade ...
33 -)))
34 -)))
35 -{{/aufgabe}}
10 +{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}}
36 36  
37 -{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}
12 +
38 38  Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
39 39  (%class=abc%)
40 -1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
41 -1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
42 -1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.
43 -1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat.
15 +1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
16 +1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
17 +1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt S verläuft.
44 44  {{/aufgabe}}
45 45  
46 -{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K3, K4,K6" zeit="10" cc="by-sa"}}
47 -Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}. Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.
48 -(%class=abc%)
49 -1. Untersuche, welches der Kinder von seinem Wohnort zu den beiden Haltestellen gleich weit hat.
50 -1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
51 -{{/aufgabe}}
20 +{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}}
52 52  
53 -{{aufgabe id="Konstruktionsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
54 -(%class=abc%)
55 -1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}A(2|4){{/formula}} in ein Koordinatensystem ein.
56 -1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}A{{/formula}} verläuft. Gib ihre Gleichung an.
57 -1. Konstruiere die Parallele {{formula}}p{{/formula}} zu {{formula}}g{{/formula}}, die durch {{formula}}A{{/formula}} verläuft.
58 -1. Konstruiere zu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}.
59 -{{/aufgabe}}
60 60  
61 -{{aufgabe id="Erarbeitungsaufgabe Winkelhalbierende" afb="II" quelle="Martin Rathgeb" kompetenzen="K1,K4,K5,K6" zeit="30" cc="by-sa"}}
62 -(%class=abc%)
63 -1. (((Zeichnen, Markieren und Benennen.
64 -i. Zeichne einen Winkel mit dem Scheitelpunkt S und den beiden Schenkeln s₁ und s₂.
65 -ii. Zeichne drei Geraden g₁, g₂ und g₃ durch S. Eine dieser Geraden soll den Winkel
66 - in zwei gleich große Teile teilen und heißt die Winkelhalbierende w.
67 -iii. Zeichne einen Kreisbogen um S mit einem Radius von etwa 6 cm, der beide Schenkel s₁ und s₂ schneidet.
68 -iv. Markiere und benenne alle Schnittpunkte der drei Geraden g₁, g₂ und g₃ mit diesem Kreisbogen
69 - der Reihe nach mit Q₁, Q₂, Q₃, …
70 -v. Markiere und benenne drei weitere Punkte R₁, R₂, R₃ auf der Winkelhalbierenden w.
71 -)))
72 -1. (((Abstände messen und vergleichen.
73 -i. Miss mit dem Geodreieck für jeden Punkt Qᵢ und Rᵢ den Lotabstand zu s₁ sowie den
74 - Lotabstand zu s₂ und gib die Werte tabellarisch an
75 - (Kopfzeile: Punkt – Abstand zu s₁ – Abstand zu s₂).
76 -ii. Vergleiche für alle Punkte Qᵢ die beiden Abstände miteinander. Gib an, auf welchen
77 - der drei Geraden g₁, g₂ und g₃ diejenigen Punkte liegen, bei denen beide Abstände
78 - (annähernd) gleich sind.
79 -iii. Vergleiche für alle Punkte Rᵢ die beiden Abstände miteinander.
80 -)))
81 -1. (((Geometrische Orte vergleichen: Kreisbogen (gesichert) und Winkelhalbierende
82 - (empirisch untersucht, später beweisbar).
83 -i. Formuliere mit eigenen Worten, was mit „geometrischer Ort“ gemeint ist.
84 - Verwende dabei die Begriffe „Menge aller Punkte“, „Bedingung“ und „Erfüllen“.
85 -ii.(((Ergänze die folgenden Sätze, indem du die passenden Begriffe einsetzt
86 - (zur Auswahl stehen: „denselben Abstand“, „je gleichen Abstand“, „konstant“, „nicht konstant“):
87 - ii.1 Alle Punkte eines Kreisbogens um den Punkt S haben zu S ...
88 - dieser Abstand bleibt für alle Punkte ...
89 - ii.2 Alle Punkte der Winkelhalbierenden w zum Winkel zwischen s₁ und s₂ haben (vermutlich)
90 - zu s₁ und s₂ ...
91 - dabei ist dieser Abstand (vermutlich) über die gesamte Gerade ...
92 -)))
93 -)))
23 +Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser im einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(5|6){{/formula}} und Moritz in{{formula}}M(6|5){{/formula}}.
24 +(%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.
25 +1. Untersuche, wer von den drei Kindern von seinem Wohnort zu den beiden Haltestellen jeweils den gleichen Weg hat.
26 +1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
94 94  {{/aufgabe}}
95 95  
96 96  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
... ... @@ -98,9 +98,15 @@
98 98  
99 99  Ein Dreieck im Koordinatensystem hat die Eckpunkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}}.
100 100  (%class=abc%)
101 -1. Bestimme die Gleichung der Gerade, die durch {{formula}}A{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild.
102 -1. Bestimme die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild.
34 +1. Berechne die Gleichung der Gerade, die durch {{formula}}A{{/formula}}und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild.
35 +1. Berechne die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild.
103 103  1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt.
37 +
38 +{{lehrende versteckt=1}}
39 +* Umgang mit Formeln
40 +* Mehrere Schritte planen und durchführen
41 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
42 +{{/lehrende}}
104 104  {{/aufgabe}}
105 105  
106 106  {{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen=" K5" zeit="5" cc="by-sa" tags="mathebrücke"}}
... ... @@ -107,4 +107,5 @@
107 107  Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}.
108 108  {{/aufgabe}}
109 109  
49 +
110 110  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
Grundkonstruktion Mittelsenkrechte.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -66.5 KB
Inhalt
Grundkonstruktion Mittelsenkrechte.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -53.9 KB
Inhalt
Haltestelle .svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -18.5 KB
Inhalt
... ... @@ -1,1 +1,0 @@
1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="978" height="922"><defs><clipPath id="DOkZmfLytlkK"><path fill="none" stroke="none" d=" M 0 0 L 978 0 L 978 922 L 0 922 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#DOkZmfLytlkK)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="978" height="922" fill-opacity="1"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 41.5 0.5 L 41.5 922.5 M 41.5 0.5 L 41.5 922.5 M 126.5 0.5 L 126.5 922.5 M 211.5 0.5 L 211.5 922.5 M 296.5 0.5 L 296.5 922.5 M 465.5 0.5 L 465.5 922.5 M 550.5 0.5 L 550.5 922.5 M 635.5 0.5 L 635.5 922.5 M 720.5 0.5 L 720.5 922.5 M 805.5 0.5 L 805.5 922.5 M 889.5 0.5 L 889.5 922.5 M 974.5 0.5 L 974.5 922.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 7.5 0.5 L 7.5 922.5 M 24.5 0.5 L 24.5 922.5 M 58.5 0.5 L 58.5 922.5 M 75.5 0.5 L 75.5 922.5 M 92.5 0.5 L 92.5 922.5 M 109.5 0.5 L 109.5 922.5 M 143.5 0.5 L 143.5 922.5 M 160.5 0.5 L 160.5 922.5 M 177.5 0.5 L 177.5 922.5 M 194.5 0.5 L 194.5 922.5 M 228.5 0.5 L 228.5 922.5 M 245.5 0.5 L 245.5 922.5 M 262.5 0.5 L 262.5 922.5 M 279.5 0.5 L 279.5 922.5 M 313.5 0.5 L 313.5 922.5 M 330.5 0.5 L 330.5 922.5 M 347.5 0.5 L 347.5 922.5 M 364.5 0.5 L 364.5 922.5 M 398.5 0.5 L 398.5 922.5 M 414.5 0.5 L 414.5 922.5 M 431.5 0.5 L 431.5 922.5 M 448.5 0.5 L 448.5 922.5 M 482.5 0.5 L 482.5 922.5 M 499.5 0.5 L 499.5 922.5 M 516.5 0.5 L 516.5 922.5 M 533.5 0.5 L 533.5 922.5 M 567.5 0.5 L 567.5 922.5 M 584.5 0.5 L 584.5 922.5 M 601.5 0.5 L 601.5 922.5 M 618.5 0.5 L 618.5 922.5 M 652.5 0.5 L 652.5 922.5 M 669.5 0.5 L 669.5 922.5 M 686.5 0.5 L 686.5 922.5 M 703.5 0.5 L 703.5 922.5 M 737.5 0.5 L 737.5 922.5 M 754.5 0.5 L 754.5 922.5 M 771.5 0.5 L 771.5 922.5 M 788.5 0.5 L 788.5 922.5 M 822.5 0.5 L 822.5 922.5 M 839.5 0.5 L 839.5 922.5 M 856.5 0.5 L 856.5 922.5 M 872.5 0.5 L 872.5 922.5 M 906.5 0.5 L 906.5 922.5 M 923.5 0.5 L 923.5 922.5 M 940.5 0.5 L 940.5 922.5 M 957.5 0.5 L 957.5 922.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 67.5 L 978.5 67.5 M 0.5 67.5 L 978.5 67.5 M 0.5 160.5 L 978.5 160.5 M 0.5 254.5 L 978.5 254.5 M 0.5 347.5 L 978.5 347.5 M 0.5 441.5 L 978.5 441.5 M 0.5 627.5 L 978.5 627.5 M 0.5 721.5 L 978.5 721.5 M 0.5 814.5 L 978.5 814.5 M 0.5 908.5 L 978.5 908.5" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(180,179,186)" paint-order="fill stroke markers" d=" M 0.5 11.5 L 978.5 11.5 M 0.5 11.5 L 978.5 11.5 M 0.5 29.5 L 978.5 29.5 M 0.5 48.5 L 978.5 48.5 M 0.5 86.5 L 978.5 86.5 M 0.5 104.5 L 978.5 104.5 M 0.5 123.5 L 978.5 123.5 M 0.5 142.5 L 978.5 142.5 M 0.5 179.5 L 978.5 179.5 M 0.5 198.5 L 978.5 198.5 M 0.5 216.5 L 978.5 216.5 M 0.5 235.5 L 978.5 235.5 M 0.5 272.5 L 978.5 272.5 M 0.5 291.5 L 978.5 291.5 M 0.5 310.5 L 978.5 310.5 M 0.5 328.5 L 978.5 328.5 M 0.5 366.5 L 978.5 366.5 M 0.5 384.5 L 978.5 384.5 M 0.5 403.5 L 978.5 403.5 M 0.5 422.5 L 978.5 422.5 M 0.5 459.5 L 978.5 459.5 M 0.5 478.5 L 978.5 478.5 M 0.5 497.5 L 978.5 497.5 M 0.5 515.5 L 978.5 515.5 M 0.5 553.5 L 978.5 553.5 M 0.5 571.5 L 978.5 571.5 M 0.5 590.5 L 978.5 590.5 M 0.5 609.5 L 978.5 609.5 M 0.5 646.5 L 978.5 646.5 M 0.5 665.5 L 978.5 665.5 M 0.5 683.5 L 978.5 683.5 M 0.5 702.5 L 978.5 702.5 M 0.5 739.5 L 978.5 739.5 M 0.5 758.5 L 978.5 758.5 M 0.5 777.5 L 978.5 777.5 M 0.5 795.5 L 978.5 795.5 M 0.5 833.5 L 978.5 833.5 M 0.5 852.5 L 978.5 852.5 M 0.5 870.5 L 978.5 870.5 M 0.5 889.5 L 978.5 889.5" stroke-opacity="0.23529411764705882" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 381.5 2.5 L 381.5 922.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 381.5 1.5 L 377.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 381.5 1.5 L 385.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="960" y="530" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">x</text><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 0.5 534.5 L 976.5 534.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 977.5 534.5 L 973.5 530.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(28,28,31)" paint-order="fill stroke markers" d=" M 977.5 534.5 L 973.5 538.5" stroke-opacity="1" stroke-miterlimit="10"/><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="36" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–8</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="121" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–6</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="206" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="291" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="463" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="548" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="633" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="718" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="800" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">10</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="884" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">12</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="386" y="17" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">y</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="361" y="913" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–8</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="361" y="819" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–6</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="361" y="726" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="361" y="632" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">–2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="367" y="446" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">2</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="367" y="352" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">4</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="367" y="259" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">6</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="367" y="165" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">8</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="361" y="72" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">10</text><text fill="rgb(28,28,31)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="12px" font-style="normal" font-weight="normal" text-decoration="normal" x="367" y="550" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">0</text><path fill="none" stroke="rgb(255,0,0)" paint-order="fill stroke markers" d=" M 308.84498147532736 927 L 731.9495839857858 -5" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="2.5"/><text fill="rgb(255,0,0)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="710" y="95" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">Mittelsenkrechte zu AB</text><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 296.23343591966227 487.7165585471456 L 635.4897558221791 674.5420434704217" stroke-opacity="0.6980392156862745" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10" stroke-width="2.5"/><path fill="rgb(77,77,255)" stroke="none" paint-order="stroke fill markers" d=" M 301.23343591966227 487.7165585471456 C 301.23343591966227 490.47798229629956 298.9948596688162 492.7165585471456 296.23343591966227 492.7165585471456 C 293.4720121705083 492.7165585471456 291.23343591966227 490.47798229629956 291.23343591966227 487.7165585471456 C 291.23343591966227 484.95513479799166 293.4720121705083 482.7165585471456 296.23343591966227 482.7165585471456 C 298.9948596688162 482.7165585471456 301.23343591966227 484.95513479799166 301.23343591966227 487.7165585471456 Z" fill-opacity="1"/><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 301.23343591966227 487.7165585471456 C 301.23343591966227 490.47798229629956 298.9948596688162 492.7165585471456 296.23343591966227 492.7165585471456 C 293.4720121705083 492.7165585471456 291.23343591966227 490.47798229629956 291.23343591966227 487.7165585471456 C 291.23343591966227 484.95513479799166 293.4720121705083 482.7165585471456 296.23343591966227 482.7165585471456 C 298.9948596688162 482.7165585471456 301.23343591966227 484.95513479799166 301.23343591966227 487.7165585471456 Z" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><text fill="rgb(77,77,255)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="300" y="478" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">A</text><path fill="rgb(77,77,255)" stroke="none" paint-order="stroke fill markers" d=" M 640.4897558221791 674.5420434704217 C 640.4897558221791 677.3034672195757 638.2511795713331 679.5420434704217 635.4897558221791 679.5420434704217 C 632.7283320730251 679.5420434704217 630.4897558221791 677.3034672195757 630.4897558221791 674.5420434704217 C 630.4897558221791 671.7806197212677 632.7283320730251 669.5420434704217 635.4897558221791 669.5420434704217 C 638.2511795713331 669.5420434704217 640.4897558221791 671.7806197212677 640.4897558221791 674.5420434704217 Z" fill-opacity="1"/><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 640.4897558221791 674.5420434704217 C 640.4897558221791 677.3034672195757 638.2511795713331 679.5420434704217 635.4897558221791 679.5420434704217 C 632.7283320730251 679.5420434704217 630.4897558221791 677.3034672195757 630.4897558221791 674.5420434704217 C 630.4897558221791 671.7806197212677 632.7283320730251 669.5420434704217 635.4897558221791 669.5420434704217 C 638.2511795713331 669.5420434704217 640.4897558221791 671.7806197212677 640.4897558221791 674.5420434704217 Z" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><text fill="rgb(77,77,255)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="639" y="665" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">B</text><path fill="rgb(125,125,255)" stroke="none" paint-order="stroke fill markers" d=" M 343.64047590747685 861.367528393698 C 343.64047590747685 864.128952142852 341.4018996566308 866.367528393698 338.64047590747685 866.367528393698 C 335.8790521583229 866.367528393698 333.64047590747685 864.128952142852 333.64047590747685 861.367528393698 C 333.64047590747685 858.606104644544 335.8790521583229 856.367528393698 338.64047590747685 856.367528393698 C 341.4018996566308 856.367528393698 343.64047590747685 858.606104644544 343.64047590747685 861.367528393698 Z" fill-opacity="1"/><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 343.64047590747685 861.367528393698 C 343.64047590747685 864.128952142852 341.4018996566308 866.367528393698 338.64047590747685 866.367528393698 C 335.8790521583229 866.367528393698 333.64047590747685 864.128952142852 333.64047590747685 861.367528393698 C 333.64047590747685 858.606104644544 335.8790521583229 856.367528393698 338.64047590747685 856.367528393698 C 341.4018996566308 856.367528393698 343.64047590747685 858.606104644544 343.64047590747685 861.367528393698 Z" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><text fill="rgb(125,125,255)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="343" y="851" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">L</text><path fill="rgb(77,77,255)" stroke="none" paint-order="stroke fill markers" d=" M 555.6756758465499 254.18470239305043 C 555.6756758465499 256.9461261422044 553.4370995957039 259.18470239305043 550.6756758465499 259.18470239305043 C 547.9142520973959 259.18470239305043 545.6756758465499 256.9461261422044 545.6756758465499 254.18470239305043 C 545.6756758465499 251.42327864389645 547.9142520973959 249.18470239305043 550.6756758465499 249.18470239305043 C 553.4370995957039 249.18470239305043 555.6756758465499 251.42327864389645 555.6756758465499 254.18470239305043 Z" fill-opacity="1"/><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 555.6756758465499 254.18470239305043 C 555.6756758465499 256.9461261422044 553.4370995957039 259.18470239305043 550.6756758465499 259.18470239305043 C 547.9142520973959 259.18470239305043 545.6756758465499 256.9461261422044 545.6756758465499 254.18470239305043 C 545.6756758465499 251.42327864389645 547.9142520973959 249.18470239305043 550.6756758465499 249.18470239305043 C 553.4370995957039 249.18470239305043 555.6756758465499 251.42327864389645 555.6756758465499 254.18470239305043 Z" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><text fill="rgb(77,77,255)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="555" y="244" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">K</text><path fill="rgb(77,77,255)" stroke="none" paint-order="stroke fill markers" d=" M 725.3038357978082 160.77195993141237 C 725.3038357978082 163.53338368056635 723.0652595469622 165.77195993141237 720.3038357978082 165.77195993141237 C 717.5424120486542 165.77195993141237 715.3038357978082 163.53338368056635 715.3038357978082 160.77195993141237 C 715.3038357978082 158.0105361822584 717.5424120486542 155.77195993141237 720.3038357978082 155.77195993141237 C 723.0652595469622 155.77195993141237 725.3038357978082 158.0105361822584 725.3038357978082 160.77195993141237 Z" fill-opacity="1"/><path fill="none" stroke="rgb(0,0,0)" paint-order="fill stroke markers" d=" M 725.3038357978082 160.77195993141237 C 725.3038357978082 163.53338368056635 723.0652595469622 165.77195993141237 720.3038357978082 165.77195993141237 C 717.5424120486542 165.77195993141237 715.3038357978082 163.53338368056635 715.3038357978082 160.77195993141237 C 715.3038357978082 158.0105361822584 717.5424120486542 155.77195993141237 720.3038357978082 155.77195993141237 C 723.0652595469622 155.77195993141237 725.3038357978082 158.0105361822584 725.3038357978082 160.77195993141237 Z" stroke-opacity="1" stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"/><text fill="rgb(77,77,255)" stroke="none" font-family="geogebra-sans-serif, sans-serif" font-size="16px" font-style="normal" font-weight="normal" text-decoration="normal" x="724" y="151" text-anchor="start" dominant-baseline="alphabetic" fill-opacity="1">M</text></g></g></svg>
Haltestelle.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -22.9 KB
Inhalt
Konstruktionsaufgabe.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -36.8 KB
Inhalt
Konstruktionsaufgabe.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -81.5 KB
Inhalt