Änderungen von Dokument BPE 5.2 Kongruenz, Kongruenzsätze und Konstruierbarkeit
Zuletzt geändert von Holger Engels am 2025/12/01 19:34
Von Version 80.1
bearbeitet von Martin Rathgeb
am 2025/11/17 01:44
am 2025/11/17 01:44
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 68.1
bearbeitet von Martin Rathgeb
am 2025/11/16 23:54
am 2025/11/16 23:54
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -13,29 +13,26 @@ 13 13 [[image:Bild 2.png||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 14 14 {{/aufgabe}} 15 15 16 -{{aufgabe id="Konstruierbarkeit von Dreiecken" afb="II" kompetenzen="K1,K2,K6" quelle="Nicole Böhringer, Slavko Lamp, Martin Rathgeb" zeit="10" cc="by-sa"}} 17 -Beurteile für jede der folgenden Dreierangaben, ob damit ein Dreieck eindeutig konstruierbar, mehrdeutig konstruierbar oder nicht existent ist. 18 -Begründe deine Entscheidung mithilfe geeigneter geometrischer Argumente, beispielsweise Kongruenzsätzen, der Winkelsumme im Dreieck, der Dreiecksungleichung oder Lageargumenten. 16 +{{aufgabe id="Konstruierbarkeit von Dreiecken" afb="II" kompetenzen="K1,K2,K6" quelle="Nicole Böhringer, Slavko Lamp" zeit="8" cc="by-sa"}} 17 +Beurteile (insbesondere mittels Kongruenzsätzen), ob die Konstruktion eines Dreiecks mit den Angaben eindeutig, mehrdeutig oder unmöglich ist. 19 19 (% class="abc" %) 20 -1. {{formula}}\alpha = 63^\circ {{/formula}},{{formula}}b = 5{,}7\ \text{cm}{{/formula}},{{formula}}c = 12{,}8\ \text{cm}{{/formula}}21 -1. {{formula}}\beta = 53^\circ {{/formula}},{{formula}}b = 4{,}5\ \text{cm}{{/formula}},{{formula}}c = 5{,}0\\text{cm}{{/formula}}22 -1. {{formula}}a = 6\ \text{cm}{{/formula}},{{formula}}\beta = 42^\circ{{/formula}},{{formula}}\gamma = 28^\circ{{/formula}}23 -1. {{formula}}a = 3\ \text{cm}{{/formula}},{{formula}}\beta = 103^\circ{{/formula}},{{formula}}\gamma = 87^\circ{{/formula}}24 -1. {{formula}}\alpha = 60^\circ {{/formula}},{{formula}}\beta = 23^\circ{{/formula}},{{formula}}\gamma = 97^\circ{{/formula}}25 -1. {{formula}}\alpha = 50^\circ {{/formula}},{{formula}}\beta = 60^\circ{{/formula}},{{formula}}\gamma = 55^\circ{{/formula}}26 -1. {{formula}}a = 8\ \text{cm}{{/formula}},{{formula}}b = 4{,}5\\text{cm}{{/formula}},{{formula}}c = 5{,}0\\text{cm}{{/formula}}27 -1. {{formula}}a = 12\ \text{cm}{{/formula}},{{formula}}b = 6\\text{cm}{{/formula}},{{formula}}c = 5\\text{cm}{{/formula}}19 +1. {{formula}}\alpha = 63^\circ; \ b = 5,\! 7\text{ cm}; \ c = 12,\! 8\text{ cm}{{/formula}} 20 +1. {{formula}}\beta = 53^\circ; \ b = 4, \! 5\text{ cm}; \ c = 5\text{ cm}{{/formula}} 21 +1. {{formula}}a = 6\text{ cm}; \ \beta = 42^\circ; \ \gamma = 28^\circ{{/formula}} 22 +1. {{formula}}\ a = 3\text{ cm}; \ \beta = 103^\circ ; \ \gamma = 87^\circ{{/formula}} 23 +1. {{formula}} \alpha = 60^\circ;\ \beta = 23^\circ ; \ \gamma = 97^\circ{{/formula}} 24 +1. {{formula}} \alpha = 50^\circ;\ \beta = 60^\circ ; \ \gamma = 55^\circ{{/formula}} 25 +1. {{formula}}a = 8\text{ cm}; \ b = 4,\!5\text{ cm}; \ c = 5\text{ cm}{{/formula}} 26 +1. {{formula}}a = 12\text{ cm}; \ b = 6\text{ cm}; \ c = 5\text{ cm}{{/formula}} 28 28 {{/aufgabe}} 29 29 30 -{{aufgabe id="Problemlösen" afb="III" kompetenzen="K 1,K2,K4" quelle="Nicole Böhringer, Martin Rathgeb" zeit="30" cc="by-sa"}}29 +{{aufgabe id="Problemlösen" afb="III" kompetenzen="K2" quelle="Nicole Böhringer, Martin Rathgeb" zeit="10" cc="by-sa"}} 31 31 Stell dir vor, ihr plant im Garten der Schule zwei Beete anzulegen. Eines soll von deiner Klasse, das andere von deiner Parallelklasse bepflanzt werden. 32 32 [[image:Bild 3.png||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 33 33 34 -(%class=abc%) 35 -1. Untersuche die Struktur der beiden Vierecke 8a und 8b. 36 -Entscheide, ob sie kongruent sind, und begründe deine Entscheidung. 37 -1. Untersuche, wie man zwei zueinander kongruente Dreiecke so zusammensetzen kann, dass ein Viereck entsteht, das nicht zu 8a und 8b kongruent ist. 38 -Konstruiere ein solches Viereck und begründe, warum es nicht kongruent ist. 33 +(% class="abc" %) 34 +1. Zeige mit Hilfe der Kongruenzzätze für Dreiecke, dass die beiden viereckigen Beete kongruent sind, soll heißen, die gleiche Form und Größe haben. 35 +1. Zeichne ein drittes Viereck, das zu keinem der beiden Vierecke kongruent ist, das aber aus zwei Dreiecken zusammengesetzt ist, die kongruent sind zu Teilfiguren in den gegebenen Vierecken. 39 39 {{/aufgabe}} 40 40 41 41 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}