Wiki-Quellcode von BPE_8

Version 6.1 von akukin am 2025/05/29 20:30

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 {{aufgabe id="Nullstellen" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
4 Welche der Zahlen {{formula}}-2; 0; 4; 6{{/formula}} sind Nullstellen der Parabel mit der Gleichung {{formula}}y=\frac{1}{2}x^2-x-4{{/formula}}?
5
6
7 {{lehrende}}
8 **Sinn dieser Aufgabe**:
9 Bei gegebenen Werten anhand der Punktprobe die richtige Lösung berechnen
10 {{/lehrende}}
11
12 {{/aufgabe}}
13
14 {{aufgabe id="Parabelgleichung bestimmen" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
15 Gib eine zugehörige Parabelgleichung an.
16 (%class="abc"%)
17 1. Eine Parabel schneidet die x-Achse an den Stellen {{formula}}x=-1{{/formula}} und {{formula}}x=1{{/formula}}.
18 1. Eine Parabel schneidet die x-Achse an der Stelle {{formula}}x=3{{/formula}}.
19
20
21 {{lehrende}}
22 **Sinn dieser Aufgabe**:
23 Anhand der gegebenen Nullstellen eine Parabelgleichung bestimmen.
24 {{/lehrende}}
25
26 {{/aufgabe}}
27
28 {{aufgabe id="Theorie Schnittpunkt Parabel und Gerade" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
29 Kreuze jeweils an, ob die Aussage richtig oder falsch ist.
30 Stelle die falschen Aussagen richtig!
31 (%class="abc"%)
32 1. Eine Gerade, die eine Kurve K berührt, nennt man Tangente an K.
33 ☐ richtig ☐ falsch
34 1. Wenn bei der Schnittpunktberechnung von Gerade und Parabel die Diskriminante null wird, dann besitzen die beiden Kurven keinen gemeinsamen Schnittpunkt.
35 ☐ richtig ☐ falsch
36 1. Eine Parabel und eine Gerade schneiden sich, wenn bei der Schnittpunkt-berechnung entweder die Diskriminante positiv oder null wird.
37 ☐ richtig ☐ falsch
38 1. Eine Gerade, die eine Parabel zweimal schneidet, heißt Sekante.
39 ☐ richtig ☐ falsch
40 1. Jede Parabel, die oberhalb einer Geraden liegt kann verschoben werden, so dass sie einen oder auch zwei Schnittpunkte mit der Geraden hat.
41 ☐ richtig ☐ falsch
42
43 {{lehrende}}
44 **Sinn dieser Aufgabe**:
45 Begrifflichkeiten zum Thema einüben
46 {{/lehrende}}
47
48 {{/aufgabe}}
49
50 {{aufgabe id="Parabelgleichung bestimmen" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
51 Untersuche, wie Parabel und Gerade zueinander liegen. Ermittle, falls vorhanden, die Koordinaten der gemeinsamen Punkte.
52 (%class="abc"%)
53 1. {{formula}}y=6x^2; \ y=5x+4{{/formula}}
54 1. {{formula}}y=2x^2-\frac{3}{2}; \ y=3{{/formula}}
55 1. {{formula}}y=x^2; \ y=3x-4{{/formula}}
56 1. {{formula}}y=x^2-3; \ y=2x-4{{/formula}}
57
58
59 {{lehrende}}
60 **Sinn dieser Aufgabe**:
61 * Ein Schnittproblem grafisch oder algebraisch lösen
62 * Koordinaten der Schnitt-/Berührpunkte berechnen
63 {{/lehrende}}
64
65 {{/aufgabe}}
66
67 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}