Änderungen von Dokument Pool

Zuletzt geändert von akukin am 2025/07/10 20:57

Von Version 162.1
bearbeitet von akukin
am 2025/06/09 13:23
Änderungskommentar: Neues Bild Stern.PNG hochladen
Auf Version 143.1
bearbeitet von Holger Engels
am 2024/07/11 20:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.akukin
1 +XWiki.holgerengels
Inhalt
... ... @@ -15,7 +15,7 @@
15 15  {{/aufgabe}}
16 16  
17 17  
18 -{{aufgabe id="Spielzeug-Holzbrücke Symmetrie" afb="III" kompetenzen="K1, K3, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" cc="by"}}
18 +{{aufgabe id="Spielzeug-Holzbrücke Symmetrie" afb="III" kompetenzen="K1, K3, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" cc=""}}
19 19  Die Abbildung zeigt modellhaft den Längsschnitt einer dreiteiligen Brücke aus Holz für eine Spielzeugeisenbahn. Die Züge können sowohl über die Brücke fahren als auch darunter hindurch.
20 20  
21 21  [[image:SpielzeugHolzbrücke.png||width="750"]]
... ... @@ -37,105 +37,37 @@
37 37  1. Ermittle mithilfe des Funktionsterms von {{formula}}k{{/formula}} den Flächeninhalt der gesamten in der 2. Abbildung gezeigten rechteckigen Vorderseite des Holzblocks.
38 38  {{/aufgabe}}
39 39  
40 -{{aufgabe id="Funktionsschar Graph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb" cc="by"}}
41 -Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a{{/formula}} mit {{formula}}f_a\left(x\right)=x\cdot e^{a\cdot x}, \ a\in\mathbb{R}, \ a\neq0{{/formula}}. Für jeden Wert von {{formula}}a{{/formula}} besitzt die Funktion {{formula}}f_a{{/formula}} genau eine Extremstelle.
42 -
43 -1. Begründe, dass der Graph von {{formula}}f_a{{/formula}} für {{formula}}x<0{{/formula}} unterhalb der //x//-Achse verläuft.
44 -1. Beide Abbildungen zeigen einen Graphen der Schar, einen der beiden für einen positiven Wert von {{formula}}a{{/formula}}. Entscheide, welche Abbildung dies ist, und begründe deine Entscheidung.
45 -[[image:Graphenfunktionsschar.png||width="550" style="display:block;margin-left:auto;margin-right:auto"]]
46 -
47 -__Hinweis__:
48 -Der Begriff „Schar“ beziehungsweise „Funktionsschar“ ist nicht konform zum Bildungsplan für berufliche Gymnasien in Baden-Württemberg. Deswegen wäre eine derartige Aufgabe für die Abiturprüfung an beruflichen Gymnasien nicht zulässig.
49 -
50 -**Eine bildungsplankonforme Variante wäre zum Beispiel**:
51 -Betrachtet wird die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot e^{a\cdot x}{{/formula}}. Dabei ist {{formula}}a\in\mathbb{R}, \ a\neq0{{/formula}} eine feste Zahl. Die Funktion {{formula}}f{{/formula}} besitzt genau eine Extremstelle.
52 -
53 -1. Begründe, dass der Graph von {{formula}}f{{/formula}} für {{formula}}x<0{{/formula}} unterhalb der //x//-Achse verläuft.
54 -1. Beide Abbildungen zeigen einen Graphen für zwei unterschiedliche Werte von {{formula}}a{{/formula}}, einen der beiden für einen positiven Wert von {{formula}}a{{/formula}}. Entscheide, welche Abbildung dies ist, und begründe deine Entscheidung.
55 -[[image:Graphenfunktionsschar.png||width="550" style="display:block;margin-left:auto;margin-right:auto"]]
40 +{{aufgabe id="CO2-Konzentration trigonometrisch" afb="II" kompetenzen="K1, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_1.pdf]]" niveau="e" tags="iqb"}}
41 +In einer Messstation wird seit 1958 kontinuierlich die CO,,2,,-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Innerhalb eines Jahres schwankt die CO,,2,,-Konzentration. Für einen bestimmten Zeitraum von acht Monaten lassen sich die gemessenen Werte modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}k: x \mapsto 3,3\cdot \sin\left(\frac{\pi}{6}x\right)+406{{/formula}} beschreiben. Dabei ist {{formula}}x{{/formula}} die in diesem Zeitraum vergangene Zeit in Monaten und {{formula}}k(x){{/formula}} die CO,,2,,-Konzentration in ppm. Vereinfachend wird davon ausgegangen, dass jeder Monat 30 Tage hat.
42 +
43 +Gib an, wie der Graph von {{formula}}k{{/formula}} schrittweise aus dem Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}s: x \mapsto \sin(x){{/formula}} hervorgeht. Beurteile, ob die Reihenfolge der einzelnen Schritte von Bedeutung ist.
56 56  {{/aufgabe}}
57 57  
58 -{{aufgabe id="Rechteck im Graphen" afb="" kompetenzen="K1,K2,K4,K5,K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_7.pdf]]" niveau="e" tags="iqb" cc="by"}}
59 -Für eine Zahl {{formula}}a>0{{/formula}} zeigt die Abbildung den Graphen {{formula}}G{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x^3-2ax^2+a^2x{{/formula}} sowie die Gerade {{formula}}h{{/formula}}. {{formula}}G{{/formula}} und {{formula}}h{{/formula}}schneiden sich im Koordinatenursprung und {{formula}}h{{/formula}} verläuft senkrecht zur Tangente an {{formula}}G{{/formula}} im Koordinatenursprung. Zudem berühren sich {{formula}}G{{/formula}} und die //x//-Achse im Punkt {{formula}}\left(a\middle|0\right){{/formula}}.
60 -Betrachtet wird dasjenige Rechteck, das die folgenden Eigenschaften besitzt:
61 -* Die beiden gemeinsamen Punkte von {{formula}}G{{/formula}} und der //x//-Achse sind zwei benachbarte Eckpunkte des Rechtecks.
62 -* Eine Diagonale liegt auf der Geraden {{formula}}h{{/formula}}.
46 +{{aufgabe id="Anzahl Gleichungslösungen" afb="" kompetenzen="K1, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_A_10.pdf]]" niveau="e" tags="iqb"}}
47 +Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}} f: x \mapsto \cos(x){{/formula}} und {{formula}} g_k: x \mapsto k\cdot x^2{{/formula}} mit {{formula}} k \in \mathbb{R}^+{{/formula}}. Die Abbildung zeigt die Graphen von {{formula}}f{{/formula}} und {{formula}}g_{\frac{1}{50}}{{/formula}}.
63 63  
64 -Skizziere das Rechteck in der Abbildung und zeige, dass der Flächeninhalt des Rechtecks unabhängig von {{formula}}a{{/formula}} ist.
49 +Entscheide, ob es Werte von {{formula}}k{{/formula}} gibt, für die die Gleichung {{formula}}f(x)=g_k(x){{/formula}} mehr als 2022 Lösungen hat. Begründe deine Entscheidung.
50 +
51 +[[image:cosx,kxhoch2.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
65 65  
66 -[[image:FunktionRechteck.PNG||width="250" style="display:block;margin-left:auto;margin-right:auto"]]
67 -
68 68  {{/aufgabe}}
69 69  
70 -{{aufgabe id="Kamelaufgabe" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
71 -Ein Scheich hatte in seinem Testament bestimmt,
72 -dass der älteste Sohn die Hälfte, der zweite Sohn ein Drittel und der dritte Sohn ein Neuntel der Kamele des Scheichs erhalten sollten.
55 +{{aufgabe id="Sinusparameter bestimmen" afb="II" kompetenzen="K1,K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_8.pdf]]" niveau="e" tags="iqb"}}
73 73  
74 -Als der Scheich starb, hinterließ seinen drei hnen 35 Kamele.
57 +Betrachtet wird die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}} s(x)=a\cdot \sin(b\cdot x)+1{{/formula}}. Die Punkte {{formula}}E_1\left(-2|-1\right){{/formula}} und {{formula}}E_2\left(2|3\right){{/formula}} sind direkt aufeinanderfolgende Extrempunkte des Graphen von {{formula}}s{{/formula}}.
75 75  
76 -Die Söhne wussten nicht, wie sie Kamele aufteilen sollten.
77 -
78 -Da kam ein kluger Mann auf seinem Kamel geritten und versprach ihnen Hilfe. Er stellte sein Kamel zu der Herde, dass es nun 36 Tiere waren und sagte: „Nun könnt ihr die Kamele nach dem Willen eures Vaters verteilen.
79 -Was übrig bleibt, nehme ich als Lohn für meinen guten Rat.“
80 -
81 -Wie viele Kamele bekommen die einzelnen Söhne?
82 -
83 -Was bekommt der kluge Mann?
84 -
85 -Wie ist es zu erklären, dass bei der Teilung Tiere für den klugen Mann übrig bleiben?
86 -
87 -Haben die Söhne durch das Hinzustellen des 36. Kamels mehr oder weniger bekommen als im Testament vorgesehen?
88 -
89 -{{lehrende}}
90 -**Sinn dieser Aufgabe:**
91 -Nichtlineares Gleichungssystem mit Einsetzung lösen.
92 -{{/lehrende}}
93 -
59 +Bestimme die Werte von {{formula}}a{{/formula}} und {{formula}}b{{/formula}}.
60 +
94 94  {{/aufgabe}}
95 95  
96 96  
97 -{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
98 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
64 +{{aufgabe id="Kosinusfunktion aufstellen" afb="" kompetenzen="" quelle="[[IQB>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_12.pdf]]" niveau="e" tags="iqb"}}
65 +Eine in {{formula}}\mathbb{R}{{/formula}} definierte Kosinusfunktion {{formula}}f{{/formula}} hat die Periode {{formula}}p{{/formula}}. Der Punkt {{formula}}\left(\frac{p}{2}\left|p\right){{/formula}} ist ein Hochpunkt des Graphen von {{formula}}f{{/formula}}, der Punkt {{formula}}\left(\frac{p}{4}\left|\frac{p}{2}\right){{/formula}} ein Wendepunkt.
99 99  
100 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}}
67 +Bestimme eine Funktionsgleichung der Kosinusfunktion in Abhängigkeit von {{formula}}p{{/formula}}.
101 101  
102 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}}
103 -
104 -(%class=abc")
105 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}.
106 -1. Welche Koordinaten des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig?
107 -1. Streiche die falsche Formel durch!
108 -1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
109 -
110 -
111 -{{lehrende}}
112 -**Sinn dieser Aufgabe:**
113 -* Umgang mit Formeln
114 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
115 -{{/lehrende}}
116 -
117 117  {{/aufgabe}}
118 118  
119 -{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
120 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
121 121  
122 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}}
123 -
124 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}}
125 -
126 -(%class=abc")
127 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}.
128 -1. Welche Länge des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig?
129 -1. Streiche die falsche Formel durch!
130 -1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
131 -
132 -{{lehrende}}
133 -**Sinn dieser Aufgabe:**
134 -* Umgang mit Formeln
135 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
136 -{{/lehrende}}
137 -
138 -{{/aufgabe}}
139 -
140 140  == IQB-Index ==
141 141  {{getaggt}}iqb{{/getaggt}}
FunktionRechteck.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -42.6 KB
Inhalt
Graphenfunktionsschar.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -9.8 KB
Inhalt
Stern.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -22.6 KB
Inhalt