Von Version 34.1
bearbeitet von Holger Engels
am 2023/11/09 21:38
am 2023/11/09 21:38
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 42.2
bearbeitet von Holger Engels
am 2023/11/13 14:44
am 2023/11/13 14:44
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -26,7 +26,7 @@ 26 26 {{/aufgabe}} 27 27 28 28 {{aufgabe id="Annäherung" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 29 -[[image:cos und pot.png|| style="float: right" width="320"]]In //[0;π/2]//soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt.29 +[[image:cos und pot.png|| style="float: right" width="320"]]In {{formula}}[0; \pi/2]{{/formula}} soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt. 30 30 31 31 (% style="list-style: alphastyle" %) 32 32 1. Bestimme //a// in Abhängigkeit von //q//. ... ... @@ -51,7 +51,7 @@ 51 51 Begründe zunächst, weshalb jede Integralfunktion von //f// auch Stammfunktion von //f// ist. Überprüfe dann, wer Recht hat. 52 52 {{/aufgabe}} 53 53 54 -{{aufgabe id="Integralfunktion" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 54 +{{aufgabe id="Integralfunktion2" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 55 55 //f// bezeichnet im Folgenden eine im ganzen Definitionsbereich **D** knickfreie Funktion. 56 56 57 57 Streng steigende Monotonie ist für //f// wie folgt definiert: ... ... @@ -144,11 +144,20 @@ 144 144 {{/aufgabe}} 145 145 146 146 {{aufgabe id="Grashalm-Orakel" afb="III" Kompetenzen="" tags="problemlösen" quelle="Stefan Rosner" cc="BY-SA"}} 147 -Wenn früher in Russland eine junge Frau wissen wollte, ob sie im nächsten Jahr verheiratet sein 148 -werde, fragte sie das Grashalm-Orakel. 147 +Wenn früher in Russland eine junge Frau wissen wollte, ob sie im nächsten Jahr verheiratet sein werde, fragte sie das Grashalm-Orakel. 149 149 Sie nahm 4 Grashalme in die Faust, sodass sie oben und unten herausragten, und bat eine Freundin, alle Enden oberhalb der Faust irgendwie zufällig, aber paarweise, zusammenzuknoten. Bei allen Enden unterhalb der Faust ebenso. Dann öffnet das Mädchen die Faust. Falls dabei ein einziger großer Ring aus Gras entsteht, bedeutet dies, dass die junge Frau im nächsten Jahr heiraten werde. 150 150 151 -Wie groß ist die Wahrscheinlichkeit, dass in dieser Situation ein einziger großer Ring aus Gras 152 -entsteht? 150 +Wie groß ist die Wahrscheinlichkeit, dass in dieser Situation ein einziger großer Ring aus Gras entsteht? 153 153 {{/aufgabe}} 154 154 153 +{{aufgabe id="Gitter" afb="III" Kompetenzen="" tags="problemlösen" quelle="Stefan Rosner" cc="BY-SA"}} 154 +[[image:Gitter 7x7.svg||style="float: right" width="200"]]Wie viele Möglichkeiten gibt es, bei einem beliebigen mxm-Gitter (//m// ist eine natürliche Zahl) entlang der Gitterlinien auf kürzestem Wege von einer Ecke zur diagonal gegenüberliegenden Ecke zu gelangen? 155 + 156 +Zur Problemlösung legen Ihnen 3 Mitschüler*innen Lösungsansätze vor. Begründe, welcher Ansatz stimmt 157 +und weshalb die beide anderen Ansätze falsch sind. 158 + 159 +**Ansatz 1:** {{formula}}2m{{/formula}} mögliche Wege 160 +**Ansatz 2:** {{formula}}2^{2m}{{/formula}} mögliche Wege 161 +**Ansatz 3:** {{formula}}\binom{2m}{m}{{/formula}} mögliche Wege 162 +{{/aufgabe}} 163 +
- Gitter 7x7.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +3.3 KB - Inhalt
-
... ... @@ -1,0 +1,1 @@ 1 +<svg version="1.1" viewBox="0.0 0.0 385.51181102362204 385.51181102362204" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l385.5118 0l0 385.5118l-385.5118 0l0 -385.5118z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l385.5118 0l0 385.5118l-385.5118 0z" fill-rule="evenodd"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m3.7795277 2.28084l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m57.771652 2.28084l0 58.826775" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m57.771652 61.107613l0 321.6273" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m111.76378 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m165.7559 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m219.74803 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m273.74014 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m327.73227 2.7795277l0 323.769" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m327.73227 326.54855l0 56.685028" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m381.7244 2.7795277l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m2.7795277 3.7795277l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m59.27034 3.7795277l323.45404 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 59.608925l53.49344 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m56.272964 59.608925l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m112.76378 59.608925l269.96063 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 113.296585l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 166.98425l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 220.67192l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 274.3596l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 328.04724l269.9606 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m272.74014 328.04724l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m329.23096 328.04724l53.49344 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 381.7349l323.45404 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m326.23358 381.7349l56.490814 0" fill-rule="nonzero"/></g></svg>