Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | |||
2 | = Terme = | ||
3 | == Allgemeines == | ||
4 | === Aufgabe 1 === | ||
5 | Handelt es sich um eine Summe, ein Produkt oder eine Potenz? | ||
6 | |||
7 | a) {{formula}} 2 \cdot a + 3 {{/formula}} | ||
8 | |||
9 | b) {{formula}} 2 \cdot (a + 3) {{/formula}} | ||
10 | |||
11 | c) {{formula}} 2 \cdot a|=3 {{/formula}} | ||
12 | |||
13 | d) {{formula}} 2|={(a + 3)} {{/formula}} | ||
14 | |||
15 | |||
16 | |= AFB | I |= Quelle | KMap | | ||
17 | |= Operatoren |(% colspan="3" %) nennen | | ||
18 | |||
19 | === Aufgabe 1 === | ||
20 | |||
21 | Lalala | ||
22 | |||
23 | |= AFB | II |= Quelle | KMap | | ||
24 | |= Operatoren |(% colspan="3" %) begründen | | ||
25 | |||
26 | === Aufgabe 2 === | ||
27 | Fasse zusammen! | ||
28 | |||
29 | a) {{formula}} 3a - 2 \cdot (a - 5b) {{/formula}} | ||
30 | |||
31 | b) {{formula}} (2a - 4b):2 + 3a + b {{/formula}} | ||
32 | |||
33 | |= AFB | I |= Quelle | - | | ||
34 | |= Operatoren |(% colspan="3" %) rechnen | | ||
35 | |||
36 | |||
37 | == Potenzen == | ||
38 | == Wurzeln == | ||
39 | == Brüche == | ||
40 | == Zusammenfassen == | ||
41 | === Aufgabe 1 === | ||
42 | Löse die Klammern auf und fasse zusammen! | ||
43 | |||
44 | a) {{formula}} -(a-b) + 1 -(a-b) + 2a - 2b {{/formula}} | ||
45 | |||
46 | b) {{formula}} \frac{2}{3}a + \frac{b}{6} - \frac{a}{3} + \frac{-b}{3} {{/formula}} | ||
47 | |||
48 | c) {{formula}} a + 2ab + b -2a - ab {{/formula}} | ||
49 | |||
50 | |= AFB | I |= Quelle | - | | ||
51 | |= Operatoren |(% colspan="3" %) rechnen | | ||
52 | |||
53 | == Ausmultiplizieren == | ||
54 | === Aufgabe 1 === | ||
55 | Multipliziere aus und fasse ggf. zusammen! | ||
56 | |||
57 | a) $ (a+b)(a-b) $ | ||
58 | |||
59 | b) $ -(a + 2) (b - 2) $ | ||
60 | |||
61 | c) $ \frac{2}{3} (9a-6b) $ | ||
62 | |||
63 | |= AFB | I |= Quelle | - | | ||
64 | |= Operatoren |(% colspan="3" %) rechnen | | ||
65 | |||
66 | == Ausklammern == | ||
67 | == Binome == | ||
68 | === Aufgabe 1 === | ||
69 | Berechne mit Hilfe der binomischen Formeln! | ||
70 | |||
71 | a) {{formula}} ( a+ 3 )|={2}= {{/formula}} | ||
72 | |||
73 | b) {{formula}} -(a + 2) (a - 2)= {{/formula}} | ||
74 | |||
75 | c) {{formula}} ( 2a- 4 )|={2}= {{/formula}} | ||
76 | |||
77 | |= AFB | I |= Quelle | - | | ||
78 | |= Operatoren |(% colspan="3" %) rechnen | |