Änderungen von Dokument Lösung Lineare Algebra

Zuletzt geändert von akukin am 2025/01/27 22:41

Von Version 10.2
bearbeitet von akukin
am 2025/01/27 22:41
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 9.1
bearbeitet von akukin
am 2025/01/25 13:06
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -132,10 +132,9 @@
132 132  <br>
133 133  {{formula}}E: \vec{x}=\overrightarrow{OF}+r\cdot \overrightarrow{FG}+ s\cdot \overrightarrow{FS}=\left(\begin{matrix}5\\2\\2 \end{matrix}\right)+ r\cdot \left(\begin{matrix}-5\\0\\0 \end{matrix}\right)+ s\cdot \left(\begin{matrix}-2\\2\\-0,5 \end{matrix}\right) \quad \ \ r,s\in \mathbb{R}{{/formula}}
134 134  <br>
135 -Da der Baumstumpf im Punkt {{formula}}(3|3|0){{/formula}} steht, muss die {{formula}}x_2{{/formula}}-Koordinate desjenigen Punktes, der auf der Ebene liegt und sich vertikal über dem Baumstumpf befindet, den Wert 3 haben.
135 +Da der Baumstumpf im Punkte {{formula}}(3|3|0){{/formula}} steht, muss die {{formula}}x_2{{/formula}}-Koordinate desjenigen Punktes, der auf der Ebene liegt und sich vertikal über dem Baumstumpf befindet, den Wert 3 haben.
136 136  <br>
137 137  Eingesetzt in die Ebenengleichung (zweite Zeile, {{formula}}x_2{{/formula}}-Komponente) ergibt sich:
138 -<br>
139 139  {{formula}}2+2s=3 \ \Leftrightarrow \ s=0,5{{/formula}}
140 140  <br>
141 141  Mit diesem Wert für den Parameter {{formula}}s{{/formula}} lässt sich die {{formula}}x_3{{/formula}}-Koordinate des entsprechenden Punktes auf der Ebene berechnen. Setzt man {{formula}}s=0,5{{/formula}} in die Ebenengleichung ein, erhält man:
... ... @@ -142,7 +142,7 @@
142 142  <br>
143 143  {{formula}}x_3=2-0,5\cdot 0,5=1,75{{/formula}}
144 144  <br>
145 -Das bedeutet, dass das Sonnensegel am Ort des Baumstumpfes eine Höhe von 1,75m hat, während der Baumstumpf selbst 1,8m hoch ist. Folglich muss der Baumstumpf gekürzt werden.
144 +Das bedeutet, dass das Sonnensegel am Ort des Baumstumpfes eine Höhe von 1,75 m hat, während der Baumstumpf selbst 1,8 m hoch ist. Folglich muss der Baumstumpf gekürzt werden.
146 146  
147 147  {{/detail}}
148 148  
... ... @@ -155,25 +155,6 @@
155 155  {{formula}}|\overrightarrow{FG}|=5{{/formula}}
156 156  {{/detail}}
157 157  
158 -
159 -{{detail summary="Erläuterung der Lösung"}}
160 -//Aufgabenstellung//
161 -<br><p>
162 -Zeige, dass es sich bei dem Segel nicht um ein gleichschenkliges Dreieck handelt.
163 -</p>
164 -//Lösung//
165 -<br>
166 -Gleichschenklig bedeutet, dass mindestens zwei von drei Seiten gleichlang sind. Mit Hilfe der Beträge der Verbindungsvektoren der Eckpunkte können die Seitenlängen berechnet und verglichen werden.
167 -<br>
168 -{{formula}}\overrightarrow{FS}= \left(\begin{matrix}-2\\2\\-0,5 \end{matrix}\right); \ \ \ |\overrightarrow{FS}|=\sqrt{4+4+0,25}=\sqrt{8,25}{{/formula}}
169 -<br>
170 -{{formula}}\overrightarrow{GS}= \left(\begin{matrix}3\\2\\-0,5 \end{matrix}\right); \ \ \ |\overrightarrow{GS}|=\sqrt{9+4+0,25}=\sqrt{13,25}{{/formula}}
171 -<br>
172 -{{formula}}|\overrightarrow{FG}|=5{{/formula}}
173 -<br>
174 -Da alle drei Seiten unterschiedlich lang sind, ist das Sonnensegel kein gleichschenkliges Dreieck.
175 -{{/detail}}
176 -
177 177  === Teilaufgabe f) ===
178 178  {{detail summary="Erwartungshorizont (offiziell)"}}
179 179  {{formula}}\overrightarrow{FP_k}=\left(\begin{matrix}-2\\k-2\\-0,5 \end{matrix}\right){{/formula}}
... ... @@ -188,60 +188,10 @@
188 188  <br><p>
189 189  Die Lösung {{formula}}k_2{{/formula}} ist aufgrund des Sachzusammenhangs irrelevant.
190 190  </p>
191 -Alternativ: Ansatz {{formula}}|\overrightarrow{GP_k}|=|\overrightarrow{GF}|{{/formula}} möglich mit {{formula}}k_1\approx 5,97{{/formula}}.
171 +Alternativ: Ansatz {{formula}}|\overrightarrow{GP_k}|=|\overrightarrow{GF}|{{/formula}} möglich mit {{formula}}k_1\approx5,97{{/formula}}.
192 192  {{/detail}}
193 193  
194 -
195 -{{detail summary="Erläuterung der Lösung"}}
196 -//Aufgabenstellung//
197 -<br><p>
198 -Bestimme einen Wert für {{formula}}k{{/formula}}, so dass durch die Verschiebung der Pfostenspitze in den Punkt {{formula}}P_k(3|k|1,5){{/formula}} ein gleichschenkliges Dreieck {{formula}}FGP_k{{/formula}} entsteht.
199 -</p>
200 -//Lösung//
201 -<br>
202 -Die Länge der Seite {{formula}}FP_k{{/formula}} des neuen Dreiecks {{formula}}FGP_k{{/formula}} kann mit Hilfe des Betrags des Verbindungsvektors zwischen den Punkten {{formula}}F{{/formula}} und {{formula}}P_k{{/formula}} ermittelt werden.
203 -<br>
204 -{{formula}}\overrightarrow{FP_k}=\left(\begin{matrix}-2\\k-2\\-0,5 \end{matrix}\right){{/formula}}
205 -<br>
206 -Den Betrag dieses Verbindungsvektors kann man mit der Länge der Seite {{formula}}GF{{/formula}} gleichsetzen und die resultierende Gleichung nach {{formula}}k{{/formula}} auflösen.
207 -<br>
208 -
209 -{{formula}}
210 -\begin{align}
211 - |\overrightarrow{FP_k}| & = |\overrightarrow{GF}| \\
212 - \Leftrightarrow \quad & \sqrt{4,25+(k-2)^2 } = 5 \\
213 - \Leftrightarrow \quad & 4,25+(k-2)^2 = 25 \\
214 - \Leftrightarrow \quad & k^2-4k-16,75 = 0 \\
215 - \Leftrightarrow \quad & k_1 \approx 6,56; \quad k_2 \approx -2,56
216 -\end{align}
217 -{{/formula}}
218 -
219 -D. h. für {{formula}}k_1{{/formula}} ist {{formula}}FGP_k{{/formula}} gleichschenklig.
220 -<br><p>
221 -Die Lösung {{formula}}k_2{{/formula}} ist aufgrund des Sachzusammenhangs irrelevant, denn mit einer negativen {{formula}}x_2{{/formula}}-Koordinate läge der Pfosten auf der falschen Seite des Glashauses.
222 -</p>
223 -Alternativ: Ansatz {{formula}}|\overrightarrow{GP_k}|=|\overrightarrow{GF}|{{/formula}} möglich mit {{formula}}k_1\approx5,97{{/formula}}.
224 -{{/detail}}
225 -
226 226  === Teilaufgabe g) ===
227 227  {{detail summary="Erwartungshorizont (offiziell)"}}
228 228  Mit dem Ansatz kann die {{formula}}x_1{{/formula}}-Koordinate des Punktes {{formula}}T(t|4|3){{/formula}}, der von den beiden Punkten {{formula}}B{{/formula}} und {{formula}}G{{/formula}} denselben Abstand hat, bestimmt werden.
229 229  {{/detail}}
230 -
231 -
232 -{{detail summary="Erläuterung der Lösung"}}
233 -//Aufgabenstellung//
234 -<br>
235 - Zur Lösung einer Aufgabe im Zusammenhang mit den Punkten {{formula}}B{{/formula}} und {{formula}}G{{/formula}} ergibt sich folgender Ansatz:
236 -<br>
237 -{{formula}}\left|\left(\begin{matrix}5-t\\ 2-4\\0-3 \end{matrix}\right)\right| =\left|\left(\begin{matrix}0-t\\ 2-4\\2-3 \end{matrix}\right)\right| {{/formula}}
238 -<br><p>
239 -Interpretiere diesen Ansatz.
240 -</p>
241 -//Lösung//
242 -<br>
243 -Man kann beide Seiten der Gleichung als Beträge von Verbindungsvektoren auffassen.
244 -Die Spitze der Verbindungsvektoren ist identisch, nämlich {{formula}}T(t|4|3){{/formula}}. Die Füsse der Verbindungsvektoren sind Punkte, die in der Aufgabe vorkommen.
245 -Mit dem Ansatz kann also die {{formula}}x_1{{/formula}}-Koordinate des Punktes {{formula}}T(t|4|3){{/formula}}, der von den beiden Punkten {{formula}}B{{/formula}} und {{formula}}G{{/formula}} denselben Abstand hat, bestimmt werden.
246 -{{/detail}}
247 -