Wiki-Quellcode von Lösung Stochastik
Zuletzt geändert von akukin am 2026/01/28 17:40
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | === Teilaufgabe a)=== | ||
| 2 | {{detail summary="Erwartungshorizont"}} | ||
| 3 | {{formula}} | ||
| 4 | 8500 \cdot 0{,}2 = 1700 | ||
| 5 | {{/formula}} | ||
| 6 | {{/detail}} | ||
| 7 | |||
| 8 | === Teilaufgabe b)=== | ||
| 9 | {{detail summary="Erwartungshorizont"}} | ||
| 10 | S: Besucher kann Snowboard fahren | ||
| 11 | (%class="border" style="width:50%" %) | ||
| 12 | | |{{formula}}A{{/formula}}|{{formula}}\overline{A}{{/formula}}| | ||
| 13 | |{{formula}}S{{/formula}}|{{formula}}0{,}08{{/formula}}||{{formula}}0{,}2{{/formula}} | ||
| 14 | |{{formula}}\overline{S}{{/formula}}|{{formula}}0{,}75{{/formula}}|{{formula}}0{,}05{{/formula}}|{{formula}}0{,}8{{/formula}} | ||
| 15 | ||{{formula}}0{,}83{{/formula}}||{{formula}}1{{/formula}} | ||
| 16 | |||
| 17 | {{formula}} | ||
| 18 | P_S(A)=0{,}4=\frac{P(S\cap A)}{P(S)} | ||
| 19 | {{/formula}}, damit: | ||
| 20 | {{formula}} | ||
| 21 | P(S\cap A)=0{,}4\cdot0{,}2=0{,}08 | ||
| 22 | {{/formula}} | ||
| 23 | <br> | ||
| 24 | {{formula}} | ||
| 25 | P(A)=0{,}83 | ||
| 26 | {{/formula}} | ||
| 27 | und {{formula}} | ||
| 28 | P(B)=P(A\cap \overline{S})=0{,}75 | ||
| 29 | {{/formula}} | ||
| 30 | <br> | ||
| 31 | {{formula}} | ||
| 32 | P(C)=P_A(S)=\frac{P(A\cap S)}{P(A)}=\frac{0{,}08}{0{,}83}\approx0{,}096 | ||
| 33 | {{/formula}} | ||
| 34 | {{/detail}} | ||
| 35 | |||
| 36 | === Teilaufgabe c)=== | ||
| 37 | {{detail summary="Erwartungshorizont"}}{{formula}} | ||
| 38 | \mu-\frac{\sigma}{2}=19{,}75{{/formula}} und {{formula}} | ||
| 39 | \mu+\frac{\sigma}{2}=25{,}25 | ||
| 40 | {{/formula}} | ||
| 41 | <br> | ||
| 42 | {{formula}} | ||
| 43 | P(19{,}75\le X\le25{,}25)\approx0{,}383 | ||
| 44 | {{/formula}} | ||
| 45 | {{/detail}} | ||
| 46 | |||
| 47 | === Teilaufgabe d)=== | ||
| 48 | {{detail summary="Erwartungshorizont"}} | ||
| 49 | {{formula}} | ||
| 50 | P(22{,}5-a\le Y\le22{,}5+a)=0{,}35 | ||
| 51 | {{/formula}} | ||
| 52 | <br> | ||
| 53 | Aus Symmetriegründen gilt: | ||
| 54 | {{formula}} | ||
| 55 | P(22{,}5\le Y\le22{,}5+a)=0{,}175 | ||
| 56 | {{/formula}} | ||
| 57 | <br> | ||
| 58 | Mit dem WTR ergibt sich | ||
| 59 | {{formula}} | ||
| 60 | a\approx2{,}5 | ||
| 61 | {{/formula}} | ||
| 62 | {{/detail}} | ||
| 63 | |||
| 64 | === Teilaufgabe e) === | ||
| 65 | {{detail summary="Erwartungshorizont"}} | ||
| 66 | Für Besucher, die mit genau einer Liftfahrt vom Gipfel zur Hütte fahren, werden folgende Ereignisse betrachtet: | ||
| 67 | <br> | ||
| 68 | ③: Besucher kommt über Piste 3 bei der Hütte an | ||
| 69 | <br> | ||
| 70 | Ⅲ: Besucher kommt über Lift Ⅲ bei der Hütte an. | ||
| 71 | |||
| 72 | <p></p> | ||
| 73 | {{formula}} | ||
| 74 | P(③)=0{,}6\cdot0{,}7\cdot0{,}4\cdot p+0{,}6\cdot0{,}3\cdot0{,}4 | ||
| 75 | =0{,}168\cdot p+0{,}072 | ||
| 76 | {{/formula}} | ||
| 77 | <br> | ||
| 78 | {{formula}} | ||
| 79 | P(Ⅲ)=0{,}6\cdot0{,}7\cdot(1-p)=0{,}42-0{,}42\cdot p | ||
| 80 | {{/formula}} | ||
| 81 | <br> | ||
| 82 | {{formula}} | ||
| 83 | P(③)>P(Ⅲ) \Leftrightarrow | ||
| 84 | 0{,}168\cdot p+0{,}072>0{,}42-0{,}42 \Leftrightarrow p >\frac{29}{49}\approx0{,}592 | ||
| 85 | {{/formula}} | ||
| 86 | {{/detail}} |