Änderungen von Dokument BPE 1 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/01/12 21:23
Von Version 33.1
bearbeitet von Martin Rathgeb
am 2024/12/11 10:12
am 2024/12/11 10:12
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 31.1
bearbeitet von Niklas Wunder
am 2024/10/15 13:54
am 2024/10/15 13:54
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinrathgeb1 +XWiki.niklaswunder - Inhalt
-
... ... @@ -1,30 +1,10 @@ 1 -{{aufgabe id="Klassenparty" afb="II" zeit="10" kompetenzen="K1,K3,K4,K5" quelle="Torben Würth" cc="BY-SA"}} 2 -Für eine Klassenparty stehen zwei Locations zur Verfügung. In der Almhütte muss für die Raummiete eine Gebühr von 200€ bezahlt werden, jedes Getränk kostet 2€. Im Hüttenzauber sind lediglich 2,5€ pro Getränk zu zahlen, eine Raummiete fällt nicht an. 3 -Begründe, für welche Location Du dich entscheiden würdest. 4 -{{/aufgabe}} 5 - 6 -{{aufgabe id="Parabel und Gerade" afb="II" zeit="15" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA"}} 7 -Gegeben ist die Funktion {{formula}}f(x)=(x+2)^2-3{{/formula}} 8 - 9 -(% style="list-style: alphastyle" %) 10 -1. Zeichne den Funktionsgraphen in einem geeigneten Intervall. 11 -[[image:Achsenkreuz.svg||width="600px"]] 12 -1. Berechne die Funktionswerte an den Stellen {{formula}}x=-3{{/formula}} und {{formula}}x=1{{/formula}}. 13 -1. Zeichne die Gerade {{formula}}g{{/formula}} durch die Punkte {{formula}}P_1(-3|-2){{/formula}} und {{formula}}P_2(1|6){{/formula}} ein. 14 -1. Berechne den Funktionsterm der Geraden {{formula}}g{{/formula}}. 15 -1. Ermittle den Bereich, in dem die Gerade über der {{formula}}x{{/formula}}-Achse verläuft. 16 -1. Bestimme den Funktionstern einer Geraden {{formula}}h{{/formula}}, die senkrecht auf der Geraden {{formula}}g{{/formula}} steht und einen gemeinsamen Punkt mit {{formula}}f{{/formula}} und {{formula}}g{{/formula}} hat. 17 -{{/aufgabe}} 18 - 19 -{{aufgabe id="Wurzelfunktion" afb="II" zeit="15" kompetenzen="K4,K5" tags="" quelle="Torben Würth" cc="BY-SA"}} 1 +{{aufgabe id="" afb="III" zeit="20" kompetenzen="K2, K5" tags="" quelle="Torben Würth" cc="BY-SA"}} 20 20 Gegeben ist die Funktion {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}} 21 - 22 -(% style="list-style: alphastyle" %) 23 -1. Gib den Funktionsterm in vereinfachter Schreibweise an. 24 -1. Gib den Funktionsterm als Wurzelfunktion an. 25 -1. Bestimme die maximale Definitionsmenge sowie den Wertebereich. 26 -1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. 27 - 3 + 1. Gib den Funktionsterm in vereinfachter Schreiweise an. 4 + 1. Gib den Funktionsterm als Wurzelfunktion an. 5 + 1. Bestimme die maximale Definitionsmenge sowie den Wertebereich. 6 + 1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. 7 + 28 28 ((((% class="border" style="width:100%" %) 29 29 |={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | | 30 30 |={{formula}}f(x){{/formula}}|||||||||||||||||| ... ... @@ -82,5 +82,5 @@ 82 82 1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 83 83 {{/aufgabe}} 84 84 85 -{{ matrix/}}65 +{{seitenreflexion/}} 86 86