Änderungen von Dokument BPE 1.5 Potenzen

Zuletzt geändert von Martin Rathgeb am 2024/12/11 09:44

Von Version 4.2
bearbeitet von holger
am 2023/04/25 15:37
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 69.1
bearbeitet von Holger Engels
am 2024/10/15 14:59
Änderungskommentar: Die Aufgaben "Rationale Potenzen - Potenzgesetze beweisen" und "- komplexe Ausdrücke vereinfachen" sind in den anderen Aufgaben aufgegangen

Zusammenfassung

Details

Seiteneigenschaften
Übergeordnete Seite
... ... @@ -1,1 +1,1 @@
1 -Main.WebHome
1 +Eingangsklasse.WebHome
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holger
1 +XWiki.holgerengels
Inhalt
... ... @@ -1,9 +1,75 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
2 -{{toc start=2 depth=2 /}}
3 -{{/box}}
1 +{{seiteninhalt/}}
4 4  
5 -=== Kompetenzen ===
6 -[[kompetenzen.K?]] Ich kann Potenzen mit rationalen Exponenten als Wurzel- oder Bruchausdrücke deuten
7 -[[kompetenzen.K?]] Ich kann zwischen den Darstellungsformen Wurzel und rationaler Exponent wechseln
8 -[[kompetenzen.K?]] Ich kann an Beispielen erläutern, dass die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten gelten
9 -[[kompetenzen.K?]] Ich kann die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten anwenden
3 +[[Kompetenzen.K1]] Ich kann Potenzen mit rationalen Exponenten als Wurzel- oder Bruchausdrücke deuten
4 +[[Kompetenzen.K5]] [[Kompetenzen.K4]] Ich kann zwischen den Darstellungsformen Wurzel und rationaler Exponent wechseln
5 +[[Kompetenzen.K5]] Ich kann die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten anwenden
6 +[[Kompetenzen.K1]] [[Kompetenzen.K5]] Ich kann an Beispielen erläutern, dass die Rechengesetze für das Multiplizieren, das Dividieren und das Potenzieren von Potenzen auch für rationale Exponenten gelten
7 +
8 +* Potenzgesetze anwenden
9 +* Wechsel Wurzel und Potenz
10 +* vereinfachen
11 +* negative Exponenten mit Beispiel erläutern
12 +* Folge negative Exponenten
13 +* Folge rationale Exponenten
14 +* Folge reelle Exponenten
15 +
16 +{{aufgabe id="Negative Exponenten" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
17 +Führe fort ..
18 +
19 +| {{formula}}2^3{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^0{{/formula}} | {{formula}}2^{-1}{{/formula}} | {{formula}}2^{-2}{{/formula}}
20 +| 8 | 4 | 2 | | | |
21 +{{/aufgabe}}
22 +
23 +{{aufgabe id="Negative Exponenten Erklärung" afb="II" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
24 +Erkläre {{formula}}2^{-2} =\frac{1}{4}{{/formula}} mithilfe des Potenzgesetzes {{formula}}a^n:a^m = a^{n-m}{{/formula}}, indem du für //n// und //m// beliebige natürliche Zahlen einsetzt, für die gilt: {{formula}}n-m=-2{{/formula}}.
25 +{{/aufgabe}}
26 +
27 +{{aufgabe id="Rationale Exponenten" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
28 +Führe fort ..
29 +
30 +| {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}}
31 +| 16 | 4 | 2 | | | |
32 +{{/aufgabe}}
33 +
34 +{{aufgabe id="Rationale Exponenten Erklärung" afb="II" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
35 +Erkläre {{formula}}\left(2^{1/2}\right)^2 = \left(\sqrt{2}\right)^{2} = 2{{/formula}} mithilfe des Potenzgesetzes {{formula}}\left(a^{n}\right)^{m} = a^{n\cdot m}{{/formula}}.
36 +{{/aufgabe}}
37 +
38 +{{aufgabe id="Vereinfachen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="6"}}
39 +Vereinfache mithilfe der Potenzgesetze:
40 +(% style="list-style: alphastyle" %)
41 +1. {{formula}}\left(2^{3}\right)^{2}{{/formula}}
42 +1. {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}}
43 +1. {{formula}}2^x\cdot2^{3-x}{{/formula}}
44 +1. {{formula}}\frac{1}{8}\cdot2^{3+x}{{/formula}}
45 +1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}}
46 +{{/aufgabe}}
47 +
48 +{{aufgabe id="Lücken" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}}
49 +Fülle die Lücken aus:
50 +(% style="list-style: alphastyle" %)
51 +1. {{formula}}x^2\cdot x^\square=x^5{{/formula}}
52 +1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}}
53 +1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}}
54 +1. {{formula}}\left(\frac{x^\square}{x^{1/3}}\right)^7=x^5{{/formula}}
55 +{{/aufgabe}}
56 +
57 +{{aufgabe id="Potenz und Wurzel" afb="I" kompetenzen="K4" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="4"}}
58 +(% style="display: inline-block; margin-right: 24px" %)
59 +(((Schreibe als Wurzel:
60 +{{formula}}a^{\frac{1}{2}}{{/formula}}
61 +{{formula}}a^{\frac{3}{2}}{{/formula}})))
62 +(% style="display: inline-block" %)
63 +(((Schreibe als Potenz:
64 +{{formula}}\sqrt[3]{a}{{/formula}}
65 +{{formula}}\sqrt[3]{a^2}{{/formula}})))
66 +{{/aufgabe}}
67 +
68 +{{aufgabe id="Pythagoreisches Tripel" afb="II" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA" zeit="40"}}
69 +Gegeben ist ein rechtwinkliges Dreieck mit den Seitenlängen a, b und c.
70 +Besitzen alle drei Seitenlängen **ganzzahlige Werte**, so nennt man die Kombination (a;b;c) **pythagoreisches Tripel**.
71 +
72 +Erläutere, weshalb es nur ein pythagoreisches Tripel gibt, bei dem eine Seitenlänge den Wert 4 besitzt.
73 +{{/aufgabe}}
74 +
75 +
XWiki.XWikiComments[0]
Autor
... ... @@ -1,0 +1,1 @@
1 +XWiki.holgerengels
Kommentar
... ... @@ -1,0 +1,1 @@
1 +Die Aufgabe [[Rationale Exponenten>>||anchor="Rationale Potenzen"]] könnte evtl. in mehrere Aufgaben gesplittet werden, für die dann Kompetenzen und Anforderungsbereiche gezielt zugewiesen werden können.
Datum
... ... @@ -1,0 +1,1 @@
1 +2024-07-22 15:34:32.122