Änderungen von Dokument BPE 1.5 Potenzen
Zuletzt geändert von Martin Rathgeb am 2024/12/11 09:44
Von Version 68.1
bearbeitet von Holger Engels
am 2024/10/15 14:57
am 2024/10/15 14:57
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 60.1
bearbeitet von Tina Müller
am 2024/10/14 17:48
am 2024/10/14 17:48
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.restle27 - Inhalt
-
... ... @@ -35,34 +35,25 @@ 35 35 Erkläre {{formula}}\left(2^{1/2}\right)^2 = \left(\sqrt{2}\right)^{2} = 2{{/formula}} mithilfe des Potenzgesetzes {{formula}}\left(a^{n}\right)^{m} = a^{n\cdot m}{{/formula}}. 36 36 {{/aufgabe}} 37 37 38 -{{aufgabe id="Vereinfachen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="6"}} 39 -Vereinfache mithilfe der Potenzgesetze: 40 -(% style="list-style: alphastyle" %) 38 +{{aufgabe id="Potenzgesetze" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 39 +Berechne mithilfe der Potenzgesetze: 41 41 1. {{formula}}\left(2^{3}\right)^{2}{{/formula}} 42 -1. {{formula}}\( (8^{2/3}\cdot 4^{1/2})/(2^{5/3})\){{/formula}}41 +1. {{formula}}\(6b^6\):\(3b^3\){{/formula}} 43 43 1. {{formula}}2^x\cdot2^{3-x}{{/formula}} 44 -1. {{formula}}\frac{1}{8}\cdot2^{3+x}{{/formula}} 45 -1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}} 46 46 {{/aufgabe}} 47 47 48 48 {{aufgabe id="Lücken" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 49 49 Fülle die Lücken aus: 50 -(% style="list-style: alphastyle" %) 51 -1. {{formula}}x^2\cdot x^\square=x^5{{/formula}} 52 -1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}} 53 -1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}} 47 +1. {{formula}}x^2\cdot x^\square=x^5{{/formula}}\\ 48 +1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}}\\ 49 +1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}}\\ 54 54 1. {{formula}}\left(\frac{x^\square}{x^{1/3}}\right)^7=x^5{{/formula}} 55 55 {{/aufgabe}} 56 56 57 -{{aufgabe id="Potenz und Wurzel" afb="I" kompetenzen="K4" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="4"}} 58 -(% style="display: inline-block; margin-right: 24px" %) 59 -(((Schreibe als Wurzel: 60 -{{formula}}a^{\frac{1}{2}}{{/formula}} 61 -{{formula}}a^{\frac{3}{2}}{{/formula}}))) 62 -(% style="display: inline-block" %) 63 -(((Schreibe als Potenz: 64 -{{formula}}\sqrt[3]{a}{{/formula}} 65 -{{formula}}\sqrt[3]{a^2}{{/formula}}))) 53 +{{aufgabe id="Vereinfachen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 54 +Vereinfache unter Zuhilfenahme der Potenzgesetze 55 +1. {{formula}}\frac14\cdot2^{a+2}{{/formula}} 56 +1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}} 66 66 {{/aufgabe}} 67 67 68 68 {{aufgabe id="Pythagoreisches Tripel" afb="II" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA" zeit="40"}} ... ... @@ -92,8 +92,9 @@ 92 92 {{aufgabe id="Rationale Potenzen-komplexe Ausdrücke vereinfachen" afb="I" kompetenzen="" quelle="Ronja Franke, Katharina Schneider" cc="BY-SA" zeit="15"}} 93 93 1. (((**Komplexere Ausdrücke** 94 94 Vereinfache die Ausdrücke 95 -a) {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} 96 -b) {{formula}}\((7^{1/3} \cdot 7^{1/4}) / (3^{7/12})\){{/formula}} 86 +- {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} 87 +- {{formula}}\((8^{2/3})^{1/2})\){{/formula}} 88 +- {{formula}}\((7^{1/3} \cdot 7^{1/4}) / (3^{7/12})\){{/formula}} 97 97 mit Hilfe der Potenzgesetze. Gib die verwendeten Potenzgesetze an. 98 98 ))) 99 99 1. (((**Transfer**