Lösung Vereinfachen
Version 10.1 von Holger Engels am 2024/10/15 12:35
- \(\left(2^{3}\right)^{2}=2^{3\cdot2}=2^{6}=64\)
- \(8^{2/3} \cdot 4^{1/2} : 2^3 = (2^3)^{2/3} \cdot (2^2)^{1/2} : 2^3 = 2^2 \cdot 2^1 : 2^3 = 1\)
- \(2^x\cdot2^{3-x}=2^{x+(3-x)}=2^3=8\)
- \(\frac{1}{8}\cdot2^{3+x}=2^x\)
- \(\frac{x^{2u}\cdot x^{a-u}}{x^u}=\frac{x^{2u}\cdot x^{a}\cdot x^{-u}}{x^u}=\frac{x^{2u}\cdot x^{a}}{x^u\cdot x^{+u}}=\frac{x^{2u}\cdot x^{a}}{x^{2u}}=x^{a}\)