Wiki-Quellcode von Lösung Vereinfachen
Zuletzt geändert von Holger Engels am 2024/10/15 14:36
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
9.1 | 1 | 1. {{formula}}\left(2^{3}\right)^{2}=2^{3\cdot2}=2^{6}=64{{/formula}} |
![]() |
11.1 | 2 | 1. {{formula}}8^{2/3} \cdot 4^{1/2} : 2^3 = (2^3)^{2/3} \cdot (2^2)^{1/2} : 2^3 = 2^2 \cdot 2^1 : 2^3 = 2^{2+1-3} = 1{{/formula}} |
![]() |
9.1 | 3 | 1. {{formula}}2^x\cdot2^{3-x}=2^{x+(3-x)}=2^3=8{{/formula}} |
4 | 1. {{formula}}\frac{1}{8}\cdot2^{3+x}=2^x{{/formula}} | ||
5 | 1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}=\frac{x^{2u}\cdot x^{a}\cdot x^{-u}}{x^u}=\frac{x^{2u}\cdot x^{a}}{x^u\cdot x^{+u}}=\frac{x^{2u}\cdot x^{a}}{x^{2u}}=x^{a}{{/formula}} | ||
![]() |
10.1 | 6 |