Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 136.1
bearbeitet von Martin Rathgeb
am 2025/01/06 23:46
am 2025/01/06 23:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 159.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:56
am 2025/01/07 00:56
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,15 +1,20 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 4 -//Verfahren statt Formel//. Unter der Überschrift //A Simple Proof of the Quadratic Formula// (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 3 +{{aufgabe id="Darstellungswechsel nach Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 +Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0)), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2)). Der Darstellungswechsel zur Produktform ist schwieriger. 5 + 6 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 5 5 (% class="border slim" %) 6 -|[[image:Po-ShenLoh_Quadratic.png||width=" 400px"]]8 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 7 7 8 -In seinem Video "Examples: A Different Way to Solve Quadrativ Equations"(https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er die Methode zur Lösung quadratischer Gleichungen vor.10 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 9 9 (% class="border slim" %) 10 -[[image:Po-ShenLoh_Quadratic_Proof.png||height="75px"]] {{formula}}\quad{{/formula}}|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="75px"]] 12 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 13 + 14 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 15 + 11 11 (% class="abc" %) 12 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. 17 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 13 13 1. {{formula}}f(x)=x^2-7x+12{{/formula}} 14 14 1. {{formula}}f(x)=x^2-14x+22{{/formula}} 15 15 1. {{formula}}f(x)=x^2-7x+12{{/formula}} ... ... @@ -18,41 +18,27 @@ 18 18 1. {{formula}}f(x)=2x^2-4x-5 {{/formula}} 19 19 20 20 ))) 21 -1. Am Ende des Videos wird gezeigt, dass die Methode die pq-Formel und die abc-Formel bewiesen. 22 -1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 23 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 24 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 25 -1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 26 - 27 -1. (((Nenne die Werte der charakteristischen Größen der Geraden: 28 -1. (((//Lage//. 29 -i) y-Achsenabschnitt {{formula}}b{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 30 -ii) x-Achsenabschnitt {{formula}}x_0{{/formula}} mit x-Achsenschnittpunkt {{formula}}S_x=N{{/formula}} 31 -))) 32 -1. (((//Kovariation//. 33 -i. Steigung {{formula}}m{{/formula}} 34 -ii. Krümmung {{formula}}a{{/formula}} 35 -))) 36 -))) 26 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 27 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 37 37 {{/aufgabe}} 38 38 39 39 {{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 40 -IN PROGRESS 41 41 (% class="abc" %) 42 -1. (((Fülle in folgenden Darstellungsformen einer Geradendie Lücken.32 +1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 43 43 (% class="border slim" %) 44 -| |{{formula}}y=\square 3\cdot (x-1)+\square{{/formula}} |45 -|{{formula}}y=\square \cdot (x- 2){{/formula}} |Graph:fallendeGerade in KoorSyS ohne Skalierung |{{formula}}y=\square \cdotx+\square{{/formula}}46 -| |{{formula}}\ frac{x}{\square}+\frac{y}{\square}=1{{/formula}} |34 +| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | 35 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}} 36 +| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} | 47 47 48 48 ))) 49 -1. (((Nenne die Werte der charakteristischen Größen der Geraden:39 +1. (((Nenne die Werte der charakteristischen Größen der Parabel: 50 50 1. (((//Lage//. 51 -i) y-Achsenabschnitt {{formula}}b{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 52 -ii) x-Achsenabschnitt {{formula}}x_0{{/formula}} mit x-Achsenschnittpunkt {{formula}}S_x=N{{/formula}} 41 +i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel 42 +ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}} 43 +iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}} 53 53 ))) 54 54 1. (((//Kovariation//. 55 -i. Steigung {{formula}}m{{/formula}} 46 +i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}} 56 56 ii. Krümmung {{formula}}a{{/formula}} 57 57 ))) 58 58 )))