Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 150.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:22
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 104.1
bearbeitet von Martin Rathgeb
am 2025/01/05 01:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,76 +1,5 @@
1 1  {{seiteninhalt/}}
2 2  
3 -{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}}
4 -//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.
5 -(% class="border slim" %)
6 -|[[image:Po-ShenLoh_Quadratic.png||width="600px"]]
7 -
8 -//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.
9 -(% class="border slim" %)
10 -|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}
11 -//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Von ihrem arithmetischen Mittel (Hälfte ihrer Summe) weichen die Nullstellen um den gleichen Wert {{formula}}u{{/formula}} nach oben bzw. unten ab. Diese Abweichung lässt sich infolge der dritten binomischen Formel als Lösung einer reinquadratischen Gleichung ermitteln.
12 -(% class="abc" %)
13 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung.
14 -1. {{formula}}f(x)=x^2-7x+12{{/formula}}
15 -1. {{formula}}f(x)=x^2-14x+22{{/formula}}
16 -1. {{formula}}f(x)=x^2-7x+12{{/formula}}
17 -1. {{formula}}f(x)=x^2-8x+13{{/formula}}
18 -1. {{formula}}f(x)=x^2+6x-4{{/formula}}
19 -1. {{formula}}f(x)=2x^2-4x-5 {{/formula}}
20 -
21 -)))
22 -1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert.
23 -//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet.
24 -{{/aufgabe}}
25 -
26 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}}
27 -IN PROGRESS
28 -(% class="abc" %)
29 -1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
30 -(% class="border slim" %)
31 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
32 -|{{formula}}y=\square (x-1)(x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KoorSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
33 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
34 -
35 -)))
36 -1. (((Nenne die Werte der charakteristischen Größen der Parabel:
37 -1. (((//Lage//.
38 -i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel
39 -ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}}
40 -iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}}
41 -)))
42 -1. (((//Kovariation//.
43 -i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}}
44 -ii. Krümmung {{formula}}a{{/formula}}
45 -)))
46 -)))
47 -{{/aufgabe}}
48 -
49 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}}
50 -IN PROGRESS
51 -In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.
52 -(% class="border slim" %)
53 -|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}}
54 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}}
55 -|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}}
56 -|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}}
57 -
58 -(% class="abc" %)
59 -1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}}
60 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen.
61 -1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen.
62 -1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon.
63 -
64 -)))
65 -1. (((Erläutere, inwiefern {{formula}}\ldots{{/formula}}
66 -1. {{formula}}\ldots{{/formula}} die //Hauptform// und die //Produktform// zwei Spezialfälle der //Punkt-Steigungs-Form// sind.
67 -1. {{formula}}\ldots{{/formula}} nur die //Allgemeine Form// diese Bezeichnung mit Recht trägt; vgl. dazu a).
68 -
69 -)))
70 -1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}.
71 -{{/aufgabe}}
72 -
73 -
74 74  {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}}
75 75  Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt.
76 76  
... ... @@ -135,16 +135,16 @@
135 135  
136 136  {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}}
137 137  Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben der Verschiebung und der Streckung in Richtung einer Koordinatenachse bzw. der Spiegelung an einer Koordinatenachse gibt es eine weitere besondere Transformation, nämlich die //Spiegelung an der ersten Winkelhalbierenden//, das ist die Gerade mit der Gleichung {{formula}}y=x{{/formula}}. Diese Spiegelung bewirkt den Koordinatentausch {{formula}}(x|y)\mapsto (y|x){{/formula}}, d.h., die Umkehrung {{formula}}y\mapsto x{{/formula}} der Zuordnung {{formula}}x\mapsto y{{/formula}}.
138 -Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}, ein Funktionsgraph) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}, kein Funktionsgraph); das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}, ein Funktionsgraph) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen (kein Funktionsgraph). Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die Gleichung {{formula}}y=x^2{{/formula}} nach {{formula}}x{{/formula}} auf und tauscht dann in der erhaltenen Gleichung {{formula}}x=\pm \sqrt{y}{{/formula}} noch die Variablen gegeneinander aus ({{formula}}y=\pm \sqrt{x}{{/formula}}).
67 +Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}), die sich nicht als Funktionsgraph verstehen lässt; das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen, die sich nicht als ein Funktionsgraph verstehen lassen. Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die erste Gleichung nach //x// auf, {{formula}}x=\pm \sqrt{y}{{/formula}}, und tauscht dann in dieser Gleichung die Variablen //x// und //y// gegenseitig aus, also {{formula}}y=\pm \sqrt{x}{{/formula}}.
139 139  
140 -Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Funktionsgraphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.
69 +Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.
141 141  [[image:Einheitsuebergreifend2.png||width="400px"]]
142 142  
143 143  (% class="abc" %)
144 -1. Löse die Gleichungen jeweils nach {{formula}}x{{/formula}} auf; du erhältst damit für {{formula}}x{{/formula}} einen Funktionsterm {{formula}}x(y){{/formula}} in {{formula}}y{{/formula}}.
145 -1. Führe in den in a) berechneten Termen {{formula}}x(y){{/formula}} den Variablentausch durch, zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
146 -1. Die in a) berechneten Terme {{formula}}x(y){{/formula}} sind insbesondere in Monotonieintervallen von {{formula}}f{{/formula}} Funktionsterme von Umkehrfunktionen {{formula}}f^{-1}{{/formula}}. Untersuche die Ausdrücke {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für {{formula}}y{{/formula}} einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
147 -1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen {{formula}}f{{/formula}} (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
73 +1. Löse die Gleichung jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//.
74 +1. Zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
75 +1. Die in a) berechneten Terme sind die Funktionsterme von Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) von Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, in dem du {{formula}}f(x){{/formula}} für //y// einsetzt und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
76 +1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen //f// (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
148 148  {{/aufgabe}}
149 149  
150 150  {{matrix/}}
Po-ShenLoh_Quadratic.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -98.4 KB
Inhalt
Po-ShenLoh_Quadratic_Example.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -828.1 KB
Inhalt
Po-ShenLoh_Quadratic_Proof.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -612.4 KB
Inhalt