Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 159.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:56
am 2025/01/07 00:56
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 158.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:47
am 2025/01/07 00:47
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,13 +1,13 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id=" Darstellungswechsel nachPo-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}}4 -Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefernFunktionsgraphenmit Parabelgleichung in Scheitelform. Ausmultiplizierenliefert die zugehörige Hauptform, das ist zumeist eine//Linearkombination// der drei Potenzfunktionenvom Grad {{formula}}\le 2{{/formula}}:diekonstante Funktion mit {{formula}}y=1{{/formula}}(die Potenzfunktion vomGrad0)),proportionale Funktion mit {{formula}}y=x{{/formula}}(die PotenzfunktionvomGrad1)undquadratische Funktion mit {{formula}}y=x^2{{/formula}}(die Potenzfunktion vom Grad 2)).Der Darstellungswechsel zur Produktform ist schwieriger.3 +{{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 +Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel sind mitunter Funktionsgraphen von //Linearkombinationen// der drei Potenzfunktionen mit Grad {{formula}}\le 2{{/formula}}, nämlich Grad 0 (konstante Funktion mit {{formula}}y=1{{/formula}}), Grad 1 (proportionale Funktion mit {{formula}}y=x{{/formula}}) und Grad 2 (quadratische Funktion mit {{formula}}y=x^2{{/formula}}). 5 5 6 -//Verfahren statt Formel (Teil 1) //. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.6 +//Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 7 7 (% class="border slim" %) 8 8 |[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 9 9 10 -//Verfahren statt Formel (Teil 2) //. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.10 +//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 11 11 (% class="border slim" %) 12 12 |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 13 13