Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 174.1
bearbeitet von Martin Rathgeb
am 2025/01/07 12:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 178.1
bearbeitet von Martin Rathgeb
am 2025/01/07 20:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -25,13 +25,33 @@
25 25  {{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
26 26  In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.
27 27  (% class="border slim" %)
28 -|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}}
29 29  |Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}}
29 +|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}}
30 30  |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}}
31 31  |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}}
32 32  
33 -Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//.
33 +Es gelten folgende Beziehungen zwischen den Parametern, wobei
34 34  
35 +\[
36 +\begin{array}{|c|l|l|l|}
37 +\hline
38 +\textbf{Nr.} & \textbf{Von} & \textbf{Zu} & \textbf{Beziehungen} \\
39 +\hline
40 +1 & \text{Scheitelform} & \text{pq-Form} & p = -2x_S, \, q = x_S^2 + y_S^* \\
41 +\hline
42 +2 & \text{pq-Form} & \text{Scheitelform} & x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q \\
43 +\hline
44 +3 & \text{Scheitelform} & \text{Produktform} & x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*} \\
45 +\hline
46 +4 & \text{pq-Form} & \text{Produktform} & x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q} \\
47 +\hline
48 +5 & \text{Produktform} & \text{pq-Form} & p = -(x_1 + x_2), \, q = x_1 x_2 \\
49 +\hline
50 +6 & \text{Produktform} & \text{Scheitelform} & x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4} \\
51 +\hline
52 +\end{array}
53 +\]
54 +
35 35  //Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.
36 36  (% class="border slim" %)
37 37  |[[image:Po-ShenLoh_Quadratic.png||width="600px"]]
... ... @@ -41,8 +41,6 @@
41 41  |[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]]
42 42  |(Video 27:00)|(Video 33:11)
43 43  
44 -//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln.
45 -
46 46  (% class="abc" %)
47 47  1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen).
48 48  1. {{formula}}y=x^2-7x+12{{/formula}}