Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 176.1
bearbeitet von Martin Rathgeb
am 2025/01/07 12:33
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 177.1
bearbeitet von Martin Rathgeb
am 2025/01/07 14:42
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -57,8 +57,6 @@
57 57  1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen.
58 58  1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert.
59 59  //Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet.
60 -Die //Normalparabel// ist Funktionsgraph der quadratischen Potenzfunktion mit {{formula}}y=x^2{{/formula}}. Die kanonischen //Transformationen// (Spiegelung, Streckung, Verschiebung jeweils bezogen auf die orientierten Koordinatenachsen; vgl. Merkhilfe, S. 4) der Normalparabel liefern weitere Parabeln als Funktionsgraphen mit Parabelgleichungen in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine Linearkombination der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgten hier dem Darstellungswechsel nach //Po-Shen Loh//.
61 -Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln.
62 62  {{/aufgabe}}
63 63  
64 64  {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}}