Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 191.4
bearbeitet von Holger Engels
am 2024/10/15 11:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 188.1
bearbeitet von Martin Rathgeb
am 2024/10/15 11:02
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.martinrathgeb
Inhalt
... ... @@ -11,7 +11,8 @@
11 11  Symmetrie
12 12  Stetigkeit
13 13  
14 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
14 +
15 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
15 15  (% style="list-style: alphastyle" %)
16 16  1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich).
17 17  ((((% class="border" style="width:100%" %)
... ... @@ -24,10 +24,19 @@
24 24  |={{formula}}g(x){{/formula}}||-1||||||||||||20|30|40|50|60|70|80|90|100
25 25  )))
26 26  1. Erkennst du eine Symmetrie?
27 -1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen.
28 +1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme
29 +(((
30 +1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
31 +2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
32 +)))
33 +1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche
34 +(((
35 +1) {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und
36 +2) {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
37 +)))
28 28  {{/aufgabe}}
29 29  
30 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
40 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
31 31  Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich).
32 32  
33 33  (% style="list-style: alphastyle" %)
... ... @@ -59,6 +59,14 @@
59 59  {{/aufgabe}}
60 60  
61 61  {{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
72 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
73 +
74 +{{lehrende}}
75 +Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich durchsetzen.
76 +{{/lehrende}}
77 +{{/aufgabe}}
78 +
79 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
62 62  Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}.
63 63  (% style="list-style: alphastyle" %)
64 64  1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an.
... ... @@ -72,12 +72,17 @@
72 72  1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an.
73 73  1. Skizziere jeweils die Graphen der Funktionen ggf. mit ihren Asymptoten; benutze dafür ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht.
74 74  1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
93 +
94 +{{lehrende}}
95 +Diese Aufgabe folgt gleich noch in anderem Layout; das bessere soll sich durchsetzen.
96 +{{/lehrende}}
75 75  {{/aufgabe}}
76 76  
77 -{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
78 -(% style="list-style: alphastyle" start="5" %)
79 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
80 -1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}.
99 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
100 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
101 +{{lehrende}}
102 +Diese Aufgabe folgt gleich noch in anderem Layout; das bessere Layout soll sich für diese und die (nach-)folgende Aufgabe durchsetzen.
103 +{{/lehrende}}
81 81  {{/aufgabe}}
82 82  
83 83  {{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}