Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 191.7
bearbeitet von Holger Engels
am 2024/10/15 12:06
am 2024/10/15 12:06
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 198.6
bearbeitet von Holger Engels
am 2024/10/15 20:37
am 2024/10/15 20:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,13 +5,7 @@ 5 5 [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern 6 6 [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern 7 7 8 -Verhalten +/- oo 9 -Verhalten nahe Definitionslücke 10 -Asymptoten 11 -Symmetrie 12 -Stetigkeit 13 - 14 -{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 8 +{{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="7" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 15 (% style="list-style: alphastyle" %) 16 16 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). 17 17 ((((% class="border" style="width:100%" %) ... ... @@ -27,7 +27,7 @@ 27 27 1. Beschreibe das Randverhalten der Funktionen und nenne ihre Wertemengen. 28 28 {{/aufgabe}} 29 29 30 -{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 24 +{{aufgabe id="Erkunden (eine Potenzfunktion) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" zeit="9" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 31 31 Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen (wo möglich). 32 32 33 33 (% style="list-style: alphastyle" %) ... ... @@ -57,7 +57,7 @@ 57 57 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 58 58 {{/aufgabe}} 59 59 60 -{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 54 +{{aufgabe id="Erkunden - Graph und Asymptoten (gerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 61 61 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}}. 62 62 (% style="list-style: alphastyle" %) 63 63 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -65,7 +65,7 @@ 65 65 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 66 66 {{/aufgabe}} 67 67 68 -{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 62 +{{aufgabe id="Erkunden - Graph und Asymptoten (ungerader Parameter)" afb="I" kompetenzen="K4,K5" zeit="12" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 69 69 Gegeben sind drei Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}}. 70 70 (% style="list-style: alphastyle" %) 71 71 1. Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an. ... ... @@ -73,13 +73,24 @@ 73 73 1. Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie? 74 74 {{/aufgabe}} 75 75 76 -{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 70 +{{aufgabe id="Abbildungsketten" afb="II" kompetenzen="K2,K4,K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 71 +**unfertig!** 72 + 77 77 (% style="list-style: alphastyle" start="5" %) 78 -1. Sei nun {{formula}}x\in \mathbb{R}^+{{/formula}}. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 74 +1. (((Gegeben seien die Funktionen //f// und //g// mit {{formula}}f(x) = x^2{{/formula}} und {{formula}}g(x) = \sqrt{2}{{/formula}}. Fülle jeweils die Lücken aus: 75 +{{formula}}3\mapsto{\text{g}}\square\xmapsto{g}\square{{/formula}} 76 +{{formula}} 77 + \begin{align*} 78 +\xmapsto{\text{Look here}} && x\\ 79 +\xrightarrow{\text{Something}} && y \\ 80 +\xhookrightarrow{\text{Something completely different}} && z 81 +\end{align*} 82 + {{/formula}} 83 +))) 79 79 1. Sei nun {{formula}}x\in \mathbb{R}{{/formula}}. Untersuche {{formula}}g(y){{/formula}} für {{formula}}y=f(x){{/formula}} und {{formula}}f(y){{/formula}} für {{formula}}y=g(x){{/formula}}. 80 80 {{/aufgabe}} 81 81 82 -{{aufgabe id="D und W" afb="I" kompetenzen="K4" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 87 +{{aufgabe id="D und W" afb="I" kompetenzen="K4" zeit="8" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 83 83 Gib jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten: 84 84 85 85 (% style="list-style: alphastyle" %) ... ... @@ -87,8 +87,8 @@ 87 87 1. {{formula}}g(x)=\sqrt{x+2}-1{{/formula}} 88 88 {{/aufgabe}} 89 89 90 -{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 91 -Untersuche die folgenden Funktionen auf Symmetrie zum Ursprung und Symmetrie zur y-Achse. 95 +{{aufgabe id="Symmetrie nachweisen" afb="I" kompetenzen="K1, K5" zeit="5" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 96 +Untersuche die folgenden Funktionen rechnerisch auf Symmetrie zum Ursprung und Symmetrie zur y-Achse. 92 92 93 93 (% style="list-style: alphastyle" %) 94 94 1. {{formula}}f(x)=\frac{5}{x}{{/formula}} ... ... @@ -97,7 +97,7 @@ 97 97 1. {{formula}}f(x)=\frac{5}{x^2}+1{{/formula}} 98 98 {{/aufgabe}} 99 99 100 -{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 105 +{{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" zeit="10" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}} 101 101 [[image:venn.svg|| width="500" style="float: left"]] 102 102 Gib für jedes Feld **A** .. **H** eine passende Funktion {{formula}}f(x)=a\cdot x^n{{/formula}} an. Sollte ein Feld nicht gefüllt werden können, begründe bitte, warum es nicht geht. 103 103 ... ... @@ -114,11 +114,11 @@ 114 114 **Zusatzaufgabe:** Finde möglichst einfache/ komplexe Lösungen. 115 115 {{/aufgabe}} 116 116 117 -{{aufgabe id="Stetigkeit - Anschaulische Einführung (Gegenlese)" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}}122 +{{aufgabe id="Stetigkeit - Anschaulische Einführung" afb="II" kompetenzen="K1,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="3"}} 118 118 Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich nicht stetig, weil man ihren Graphen nicht ohne Absetzen zeichnen kann. Nimm dazu Stellung! 119 119 {{/aufgabe}} 120 120 121 -{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 126 +{{aufgabe id="Stetigkeitsbetrachtungen" afb="II" kompetenzen="K4,K6" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5"}} 122 122 Beurteile für jedes Schaubild, ob der Graph zu einer (zusammengesetzten) Funktion gehören kann und ob diese im dargestellten Bereich stetig ist! 123 123 [[image:Stetigkeit ee.svg||style="margin: 8px"]] [[image:Stetigkeit ie.svg||style="margin: 8px"]] [[image:Stetigkeit ei.svg||style="margin: 8px"]] [[image:Stetigkeit ii.svg||style="margin: 8px"]] 124 124 [[image:Stetigkeit lee.svg||style="margin: 8px"]] [[image:Stetigkeit o.svg||style="margin: 8px"]] (% style="display: inline-block" %) Hinweis: ... ... @@ -126,7 +126,13 @@ 126 126 ⭘ schließt ihn aus 127 127 {{/aufgabe}} 128 128 129 -{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}} 130 -Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 134 +{{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="7" niveau="p"}} 135 +Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung! 136 +(% style="list-style: alphastyle" %) 137 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 138 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 131 131 {{/aufgabe}} 132 132 141 +{{lehrende}}K3 wird im Bildungsplan nicht genannt, wird aber bei Übergreifend aufgegriffen.{{/lehrende}} 142 + 143 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="3"/}}