Änderungen von Dokument BPE 2.1 Funktionstypen und deren Eigenschaften
Zuletzt geändert von Holger Engels am 2025/03/31 21:42
Von Version 192.1
bearbeitet von Holger Engels
am 2024/10/15 12:12
am 2024/10/15 12:12
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 193.3
bearbeitet von Holger Engels
am 2024/10/15 12:23
am 2024/10/15 12:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,12 +5,6 @@ 5 5 [[Kompetenzen.K1]] [[Kompetenzen.K4]] Ich kann die Eigenschaften von Potenzfunktionen ausgehend von den Funktionsgraphen erläutern 6 6 [[Kompetenzen.K1]] Ich kann den Stetigkeitsbegriff anschaulich anhand der Graphen von Potenzfunktionen erläutern 7 7 8 -Verhalten +/- oo 9 -Verhalten nahe Definitionslücke 10 -Asymptoten 11 -Symmetrie 12 -Stetigkeit 13 - 14 14 {{aufgabe id="Erkunden (Paar von Potenzfunktionen) - Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}} 15 15 (% style="list-style: alphastyle" %) 16 16 1. Ergänze für die Funktionsgleichung {{formula}}f(x)=x^2{{/formula}} folgende Wertetabelle (wo möglich). ... ... @@ -127,6 +127,12 @@ 127 127 {{/aufgabe}} 128 128 129 129 {{aufgabe id="Umkehrung" afb="III" kompetenzen="K1, K2, K5" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="5" niveau=p}} 130 -Sascha behauptet, die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. Nimm dazu Stellung! 124 +Sascha formuliert die beiden nachfolgenden Behauptungen. Nimm dazu Stellung! 125 +(% style="list-style: alphastyle" %) 126 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 127 +1. Die Funktion //f// mit {{formula}}f(x) = \frac{1}{x^2}{{/formula}} sei auf ihrem maximalen Definitionsbereich ihre eigene Umkehrfunktion. 131 131 {{/aufgabe}} 132 132 130 +{{lehrende}}K3 wird im Bildungsplan nicht genannt, wird aber bei Übergreifend aufgegriffen.{{/lehrende}} 131 + 132 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="3"/}}