Zuletzt geändert von Holger Engels am 2025/03/31 21:42

Von Version 62.1
bearbeitet von Martin Rathgeb
am 2024/10/14 15:53
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 117.1
bearbeitet von Martin Rathgeb
am 2024/10/14 21:37
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -11,14 +11,52 @@
11 11  Symmetrie
12 12  Stetigkeit
13 13  
14 +
15 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
16 +Ergänze nachfolgende Wertetabelle zu folgenden Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}} und {{formula}}g(x)=x^{1/2}{{/formula}}. Erkennst du eine Symmetrie?
17 +
18 +(% class="border" %)
19 +|={{formula}}x{{/formula}}| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 16| 25| 36| 49| 64| 81| 100| 400| 900| {{formula}}10^{3}{{/formula}}| {{formula}}10^{6}{{/formula}}| {{formula}}10^{9}{{/formula}}
20 +|={{formula}}f(x){{/formula}}|||||||||||||||||||||||
21 +|={{formula}}g(x){{/formula}}|||||||||||||||||||||||
22 +{{/aufgabe}}
23 +
24 +{{aufgabe id="Erkunden - Wertetabelle" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
25 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und maximalem Definitionsbereich. Untersuche ihr Randverhalten anhand folgender Wertetabellen. Erkennst du eine Symmetrie?
26 +
27 +(% style="list-style: alphastyle" %)
28 +1. Randverhalten: Verhalten im Unendlichen
29 +(((
30 +1.1 Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}})
31 +(% class="border" %)
32 +|={{formula}}x{{/formula}}| {{formula}}1{{/formula}}| {{formula}}10{{/formula}}| {{formula}}100{{/formula}}| {{formula}}10^3{{/formula}}| {{formula}}10^6{{/formula}}| {{formula}}10^9{{/formula}}
33 +|={{formula}}f(x){{/formula}}|||||||
34 +1.1 Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}})
35 +(% class="border" %)
36 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-10^3{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}
37 +|={{formula}}f(x){{/formula}}||||||
38 +)))
39 +
40 +1. Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}})
41 +(((
42 +1.1 Randverhalten: Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}})
43 +(% class="border" %)
44 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}}
45 +|={{formula}}f(x){{/formula}}|||||
46 +
47 +1.1 Randverhalten: Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}})
48 +(% class="border" %)
49 +|={{formula}}x{{/formula}}| {{formula}}\pm 1{{/formula}}| {{formula}}\pm 0,1{{/formula}}| {{formula}}\pm 0,01{{/formula}}| {{formula}}\pm 0,001{{/formula}}| {{formula}}\pm 0,0001{{/formula}}
50 +|={{formula}}f(x){{/formula}}|||||
51 +)))
52 +{{/aufgabe}}
53 +
14 14  {{aufgabe id="Erkunden - Gerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
15 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht.
16 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
55 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^2{{/formula}}, {{formula}}g(x)=x^{1/2}{{/formula}} und {{formula}}h(x)=x^{-2}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x-Achse von {{formula}}[-3; +3]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
17 17  {{/aufgabe}}
18 18  
19 19  {{aufgabe id="Erkunden - Ungerader Parameter" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
20 -Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht.
21 -Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
59 +Gib zu den Funktionsgleichungen {{formula}}f(x)=x^3{{/formula}}, {{formula}}g(x)=x^{1/3}{{/formula}} und {{formula}}h(x)=x^{-3}{{/formula}} jeweils den maximalen Definitionsbereich mit zugehörigem Wertebereich an und skizziere die Graphen der Funktionen ggf. mit ihren Asymptoten in ein gemeinsames Koordinatensystem, dessen x- und y-Achse jeweils von {{formula}}[-8; +8]{{/formula}} geht. - Erkennst du bei einem Graphen bzw. zwischen zwei Graphen eine Symmetrie?
22 22  {{/aufgabe}}
23 23  
24 24  {{aufgabe id="D und W" afb="I" kompetenzen="" quelle="Holger Engels, Martin Rathgeb" cc="BY-SA"}}
... ... @@ -30,11 +30,12 @@
30 30  {{/aufgabe}}
31 31  
32 32  {{aufgabe id="Eigenschaften" afb="I" kompetenzen="K1, K5" quelle="??" cc="BY-SA"}}
33 -Bestimme zu den unten genannten Funktionen (1) den maximalen Definitionsbereich mit (2) zugehörigem Wertebereich, (3) den Globalverlauf, (4) die Symmetrie und gegebenenfalls (5) waagerechte und senkrechte Asymptoten.
71 +Gegeben ist die Funktionsgleichung {{formula}}f(x) = \frac{-3}{x-2}+4{{/formula}}.
34 34  
35 35  (% style="list-style: alphastyle" %)
36 -1. Das Schaubild der Funktion g ist eine Parabel vierter Ordnung mit dem Scheitel {{formula}}S(-2| 3){{/formula}}, die um den Streckungsfaktor {{formula}}\frac{1}{2}{{/formula}} in y-Richtung gestreckt wurde.
37 -1. Die Funktion h ist eine transformierte Potenzfunktion mit {{formula}}h(x) = \frac{-3}{x-2}+4{{/formula}}.
74 +1. Gib für die Funktion //f// den maximalen Definitionsbereich mit zugehörigem Wertebereich und den Globalverlauf an.
75 +1. Nenne für den Graphen von //f// die waagerechte Asymptote und die senkrechte Asymptote.
76 +1. Zeige durch Rechnung, dass der Graph der Funktion weder symmetrisch zum Ursprung noch symmetrisch zur y-Achse ist.
38 38  {{/aufgabe}}
39 39  
40 40  {{aufgabe id="Venn - Eigenschaften" afb="II" kompetenzen="K2, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="8" tags="problemlösen"}}