Wiki-Quellcode von Lösung Symmetrie nachweisen

Version 3.1 von Martin Rathgeb am 2024/11/05 22:59

Zeige letzte Bearbeiter
1 **Vorbemerkung:**
2 1. Für die angegebenen Funktionsgleichungen ist jeweils {{formula}}\mathbb{R}^*{{/formula}} der maximale Definitionsbereich {{formula}}\bold{D}{{/formula}}.
3 1. Diese Zahlenmenge ist zur y-Achse symmetrisch, denn mit {{formula}}x\in \mathbb{R}^*{{/formula}} gilt stets auch {{formula}}-x\in \mathbb{R}^*{{/formula}}. Damit ist gezeigt, was verlangt war (alias q.e.d.).
4 {{formula}}\emph{Expliziter:}{{/formula}} Es sei ein {{formula}}x\in \bold{D}{{/formula}} gegeben, d.h. {{formula}}x\in \mathbb{R}^*{{/formula}}, also gilt {{formula}}x\in \mathbb{R}{{/formula}} und {{formula}}x\ne 0{{/formula}}. Daraus folgt {{formula}}-x\in \mathbb{R}{{/formula}} und {{formula}}-x\ne 0{{/formula}}, also gilt {{formula}}-x\in \mathbb{R}^*{{/formula}}, d.h. {{formula}}-x\in \bold{D}{{/formula}}.
5 1. Wenn ein Funktionsgraph K,,f,, symmetrisch zum Ursprung und symmetrisch zur y-Achse ist, dann muss die Funktion eine Nullabbildung ({{formula}}x\mapsto 0{{/formula}}) sein.
6 {{formula}}\emph{Expliziter:}{{/formula}} Nach Voraussetzung gilt die Termkette {{formula}}-f(x)=f(-x)=f(x){{/formula}}, also {{formula}}-f(x)=f(x){{/formula}} bzw. {{formula}}0=2\cdot f(x){{/formula}} bzw. {{formula}}f(x)=0{{/formula}}.
7 1. Die Funktionen in den Teilaufgaben sind offensichtlich keine Nullabbildungen, also ist jeder Nachweis der Symmetrie zum Ursprung zugleich ein Nachweis, dass keine Symmetrie zur y-Achse vorliegt, und umgekehrt ist jeder Nachweis der Symmetrie zur y-Achse zugleich ein Nachweis, dass keine Symmetrie zum Ursprung vorliegt.
8
9 **Teilaufgaben:**
10 (% style="list-style: alphastyle" %)
11 1. Es gilt allgemein {{formula}}f(-x)=\frac{5}{-x}=-(\frac{5}{x})=-f(x){{/formula}} für jedes {{formula}}x\in \bold{D}{{/formula}}, also ist K,,f,, symmetrisch zum Ursprung.
12 Es zeigt bereits das (Gegen-)Beispiel {{formula}}f(-1)=\frac{5}{-1}=-5\ne 5=\frac{5}{1}=f(1){{/formula}}, dass K,,f,, nicht symmetrisch zur y-Achse ist.
13 1. Es zeigt bereits das (Gegen-)Beispiel {{formula}}f(-1)=\frac{5}{-1}+1=-4\ne -(6)=-(\frac{5}{1}+1)=-f(1){{/formula}}, dass K,,f,, nicht symmetrisch zum Ursprung ist.
14 Es zeigt bereits das (Gegen-)Beispiel {{formula}}f(-1)=\frac{5}{-1}+1=-4\ne 6=\frac{5}{1}+1=f(1){{/formula}}, dass K,,f,, nicht symmetrisch zur y-Achse ist.
15 1. Es gilt allgemein {{formula}}f(-x)=\frac{5}{(-x)^2}=\frac{5}{x^2}=f(x){{/formula}} für jedes {{formula}}x\in \bold{D}{{/formula}}, also ist K,,f,, symmetrisch zur y-Achse.
16 Es zeigt bereits das (Gegen-)Beispiel {{formula}}f(-1)=\frac{5}{(-1)^2}=5\ne -(5)=-(\frac{5}{(1)^2})=-f(1){{/formula}}, dass K,,f,, nicht symmetrisch zum Ursprung ist.
17 1. Es gilt allgemein {{formula}}f(-x)=\frac{5}{(-x)^2}+1=\frac{5}{x^2}+1=f(x){{/formula}} für jedes {{formula}}x\in \bold{D}{{/formula}}, also ist K,,f,, symmetrisch zur y-Achse.
18 Es zeigt bereits das (Gegen-)Beispiel {{formula}}f(-1)=\frac{5}{(-1)^2}+1=6\ne -(6)=-(\frac{5}{(1)^2}+1)=-f(1){{/formula}}, dass K,,f,, nicht symmetrisch zum Ursprung ist.