Änderungen von Dokument Lösung Musterklassenarbeit Aufgabe 5

Zuletzt geändert von Martin Rathgeb am 2024/12/09 00:27

Von Version 4.1
bearbeitet von Martin Rathgeb
am 2024/12/09 00:27
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 2.3
bearbeitet von akukin
am 2024/12/03 07:08
Änderungskommentar: Update document after refactoring.

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinrathgeb
1 +XWiki.akukin
Inhalt
... ... @@ -1,5 +1,4 @@
1 -a) Mit dem Satz vom Nullprodukt folgt, dass die linke Seite der Gleichung genau dann 0 ist, wenn einer der beiden Faktoren 0 ist.
2 -Der Faktor {{formula}}(2x-2){{/formula}} wird 0 für {{formula}}x=1{{/formula}} ({{formula}}2x-2=0 \ \Leftrightarrow \ 2x=2 \ \Leftrightarrow \ x=1{{/formula}}).
1 +a) Mit dem Satz vom Nullprodukt folgt, dass die linke Seite der Gleichung genau dann 0 ist, wenn einer der beiden Faktoren 0 ist. Der Faktor {{formula}}(2x-2){{/formula}} wird 0 für {{formula}}x=1{{/formula}} ({{formula}}2x-2=0 \ \Leftrightarrow \ 2x=2 \ \Leftrightarrow \ x=1{{/formula}}).
3 3  Der Faktor {{formula}}(x+4){{/formula}} wird 0 für {{formula}}x=-4{{/formula}} ({{formula}}x+4=0 \ \Leftrightarrow \ x=-4{{/formula}}).
4 4  
5 5  Somit sind die Lösungen der Gleichung {{formula}}x_1=1{{/formula}} und {{formula}}x_2=-4{{/formula}} jeweils mit Vielfachheit 1.
... ... @@ -31,7 +31,7 @@
31 31  Die Lösungen besitzen beide die Vielfachheit 1.
32 32  
33 33  d) Ausmultiplizieren liefert {{formula}}x^2(3x^2-10)+3 = 3x^4-10x^2+3 = 0{{/formula}}.
34 -Nun substituieren wir {{formula}}x^2{{/formula}} mit {{formula}}z{{/formula}}, wodurch wir die Gleichung {{formula}}3z^2-10z+3=0{{/formula}} erhalten, auf die sich die abc-Formel (bzw. nach Division durch 3 die pq-Formel) anwenden lässt:
33 +Nun substituieren wir {{formula}}x^2{{/formula}} mit {{formula}}z{{/formula}}, wodurch wir die Gleichung {{formula}}3z^2-10z+3=0{{/formula}} erhalten, auf die sich die Mitternachtsformel anwenden lässt:
35 35  
36 36  {{formula}}
37 37  \begin{align}