Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 12.1
bearbeitet von Martin Rathgeb
am 2025/04/06 23:52
am 2025/04/06 23:52
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 42.1
bearbeitet von Martin Rathgeb
am 2025/04/07 23:23
am 2025/04/07 23:23
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,90 +3,67 @@ 3 3 4 4 **Lösungsschritte:** 5 5 (% class="abc" %) 6 -1. //Tabellarisches Verfahren (Teil 1).//6 +1. **Tabellarisches Verfahren (Teil 1).** 7 7 8 -**Wertetabelle I (ganzzahlige Werte):** 8 +//Wertetabelle I.// 9 + 9 9 (% class="border slim" %) 10 10 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 11 11 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}} 12 12 13 - **Interpretation:**14 -Die Funktion nimmt iniesenPunktenausschließlichnicht-negative Werte an.Nur bei {{formula}}x = \pm 1{{/formula}}wird derFunktionswertnull. Zwischen diesenPunkten bleibt das Verhalten unklar – wir sehen nochkeine negativen Werte. Einegenauere Untersuchung ist nötig.14 +//Interpretation.// 15 +Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar. 15 15 16 -2. //Tabellarisches Verfahren (Teil 2).//17 +2. **Tabellarisches Verfahren (Teil 2).** 17 17 18 - **Wertetabelle II(ergänzende Zwischenwerte):**19 +//Wertetabelle II.// 19 19 (% class="border slim" %) 20 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}| 21 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}| 21 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 22 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 23 +|Vorzeichen von {{formula}}f(x){{/formula}} |{{formula}}+{{/formula}} |{{formula}}-{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+{{/formula}}|{{formula}}+{{/formula}}|{{formula}}+{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-{{/formula}}|{{formula}}+{{/formula}} 22 22 23 -**Interpretation:** 24 -Nun zeigt sich: 25 -(i) Für diejenigen {{formula}}x{{/formula}} mit {{formula}}x<-2{{/formula}}, {{formula}}-1<x<+1[{{/formula}} und {{formula}}+2<x{{/formula}} gilt {{formula}}f(x)>0{{/formula}}. 26 -(ii) Für diejenigen {{formula}}x{{/formula}} mit {{formula}}-1,5<x<-1{{/formula}}, {{formula}}+1<x<+1,5[{{/formula}} gilt {{formula}}f(x)<{{/formula}}. 27 -(iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn für beide Intervalle gilt: An den Rändern hat {{formula}}f(x){{\formula}} unterschiedliche Vorzeichen. 25 +//Interpretation.// 26 +i) Wir kennen nun nicht nur die beiden Nullstellen {{formula}}x=\pm 1{{/formula}}, sondern wissen auch, dass es in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} noch jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen. 27 +ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}. 28 +iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 28 28 29 -3. **Graphische Skizze:**30 +3. **Graphisches Verfahren:** 30 30 31 -Die Funktion ist **geraden Grades** (4) mit **positivem Leitkoeffizienten** (1). Daraus folgt: 32 -- {{formula}}\lim_{x \to \pm \infty} f(x) = +\infty{{/formula}} 33 -- Die Funktion ist **achsensymmetrisch**, da alle Potenzen gerade sind. 34 -- Die vorherige Tabelle zeigt, dass der Graph in der Nähe von {{formula}}x = \pm 1{{/formula}} die x-Achse berührt und dazwischen negativ wird. 32 +i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 33 +ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn das Globalverhalten von {{formula}}f{{/formula}} ist das Globalverhalten der Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 34 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+). 35 +iv) Skizze des Funktionsgraphen (selbst anfertigen) 36 +v) Der Skizze lässt sich entnehmen: Es gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 35 35 36 -**Lage zur x-Achse:** 37 -- Nullstellen: {{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}} 38 -- Graph liegt **oberhalb der x-Achse** für: 39 - - {{formula}}x < -\sqrt{3}{{/formula}} 40 - - {{formula}}-1 < x < 1{{/formula}} 41 - - {{formula}}x > \sqrt{3}{{/formula}} 42 - 43 ---- 44 - 45 45 4. **Rechnerisches Verfahren:** 46 46 47 -Faktorisieren: 40 +i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 41 +ii) //Nullstellen// (jeweils 1-fach): {{formula}}x_1=-\sqrt{3}{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}}, {{formula}}x_4=+\sqrt{3}{{/formula}} 42 +iii) //Vorzeichenanalyse.// 43 +iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 44 +iii.2) Testwertverfahren: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 48 48 49 -{{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x - 1)(x + 1)(x - \sqrt{3})(x + \sqrt{3}){{/formula}} 46 +(% class="border slim" %) 47 +| Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} 48 +| {{formula}}x < x_1{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}+{{/formula}} 49 +| {{formula}}x_1 < x < x_2{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}-{{/formula}} 50 +| {{formula}}x_2 < x < x_3{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}+{{/formula}} 51 +| {{formula}}x_3 < x < x_4{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}-{{/formula}} 52 +| {{formula}}x > x_4{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}+{{/formula}} 50 50 51 -**Nullstellen:** 54 +//Gesuchte Lösung.// 55 +Die Ungleichung {{formula}}f(x) > 0{{/formula}} ist erfüllt für alle {{formula}}x{{/formula}} in: 52 52 53 -{{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}} 57 +//Lösungsmenge.// 58 +{{formula}}\mathbb{L} = {{/formula}} Vereinigung der folgenden offenen Intervalle: 59 +i) „kleiner als die kleinste Nullstelle“: {{formula}}x < -\sqrt{3}{{/formula}} 60 +ii) „zwischen –1 und 1“: {{formula}}-1 < x < 1{{/formula}} 61 +iii) „größer als die größte Nullstelle“: {{formula}}x > \sqrt{3}{{/formula}} 62 +Formal: {{formula}}\mathbb{L} = ]-\infty,\ -\sqrt{3}[ \cup ]-1,\ 1[ \cup ]\sqrt{3},\ \infty[{{/formula}} 54 54 55 -**Vorzeichenanalyse:** 56 - 57 -| Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} | 58 -|----------------------------------|----------|---------------------------------------------| 59 -| {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 60 -| {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 61 -| {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 62 -| {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | 63 -| {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | 64 - 65 -**Gesuchte Lösung:** 66 -{{formula}}f(x) > 0{{/formula}} ist erfüllt für 67 - 68 -**L** = {{formula}}(-\infty,\ -\sqrt{3}) \cup (-1,\ 1) \cup (\sqrt{3},\ \infty){{/formula}} 69 - 70 ---- 71 - 72 -5. **Vergleich der Verfahren:** 73 - 74 -- Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen. 75 -- Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig. 76 -- Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus. 77 - 78 -**Didaktisch:** 79 -Die Verfahren stehen in einer natürlichen Lernprogression: 80 -Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen. 81 - 82 -{{/loesung}} 83 - 84 ---- 85 - 86 -**Zusammenfassung:** 87 -- Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. 88 -- Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. 89 -- Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. 90 - 91 -{{/loesung}} 92 - 64 +**Anmerkung: Vergleich der Verfahren** 65 +- Das //tabellarische Verfahren// bietet erste Einsichten: Es erlaubt, Vorzeichen zu erkunden und funktionale Zusammenhänge aufzubauen. Es bleibt jedoch punktuell und qualitativ. 66 +- Das //graphische Verfahren// macht strukturelle Eigenschaften sichtbar: Symmetrie, Nullstellen, Anstiegsverhalten. Es visualisiert den Lösungsbereich und unterstützt Begriffsbildung. 67 +- Das //rechnerische Verfahren// führt zur exakten Lösung: Es erlaubt die genaue Bestimmung aller Nullstellen und den präzisen Aufbau der Lösungsmenge. Dafür sind algebraische Fähigkeiten nötig. 68 +//Didaktisch ergänzen sich die Verfahren.// 69 +Sie bilden eine sinnvolle Progression – von konkreten Werten (Tabelle) über strukturierte Bilder (Graph) bis zur abstrakten Ableitung (Rechnung). Ihr Zusammenspiel fördert nachhaltiges Konzeptverständnis.