Änderungen von Dokument Lösung Anwendung drei Verfahren
Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23
Von Version 25.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:16
am 2025/04/07 01:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 31.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:35
am 2025/04/07 01:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,51 +3,41 @@ 3 3 4 4 **Lösungsschritte:** 5 5 (% class="abc" %) 6 -1. **Tabellarisches Verfahren (Teil 1)** 6 +1. **Tabellarisches Verfahren (Teil 1).** 7 7 8 -Wertetabelle :8 +//Wertetabelle I.// 9 9 10 10 (% class="border slim" %) 11 11 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}| 12 12 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}| 13 13 14 - *Interpretation:*14 +//Interpretation.// 15 15 Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar. 16 16 17 - 1.//Tabellarisches Verfahren (Teil1).//17 +2. **Tabellarisches Verfahren (Teil 2).** 18 18 19 - **Wertetabelle I(ganzzahlige Werte):**19 +//Wertetabelle II.// 20 20 (% class="border slim" %) 21 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 22 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}} 23 - 24 -**Interpretation:** 25 -Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig. 26 - 27 -2. //Tabellarisches Verfahren (Teil 2).// 28 - 29 -**Wertetabelle II (ergänzende Zwischenwerte):** 30 -(% class="border slim" %) 31 31 |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}} 32 32 |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}} 33 33 34 - **Interpretation:**35 -i) Alsogilt {{formula}}f(x)>0{{/formula}}für alle {{formula}}x{{/formula}}kleiner-2, für alle{{formula}}x{{/formula}}zwischen-1 und+1 undfür alle {{formula}}x{{/formula}} größer+2.36 -ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}}für alle {{formula}}x{{/formula}}zwischen-1,5nd-1undfüralle{{formula}}x{{/formula}}zwischen +1und +1,5.37 -iii) Hingegenliegtin den Intervallen{{formula}}]-2; -1,5[{{/formula}}und{{formula}}]+1,5; +2[{{/formula}}jeweilsmindestens eine Nullstellevon{{formula}}f{{/formula}},denn bei beidenIntervallenhaben die Funktionswertean den Rändern verschiedene Vorzeichen.24 +//Interpretation.// 25 +i) Wir kennen nun nicht nur die beiden Nullstellen {{formula}}x=\pm 1{{/formula}}, sondern wissen auch, dass es in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} noch jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen. 26 +ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}. 27 +iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 38 38 39 39 3. **Graphische Skizze:** 40 40 41 41 i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade. 42 42 ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}. 43 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+). 44 -iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zurersten Nullstelle(zwischen -2und -1,5 gelegen),weiterzwischen den Nullstellen-1und +1und zuletztabderviertenNullstelle(zwischen +1,5und +2 gelegen).33 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+). 34 +iv) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und für alle {{formula}}x>x_4{{/formula}}. 45 45 46 46 4. **Rechnerisches Verfahren:** 47 47 48 48 i) //Faktorisieren// (Satz von Vieta zzgl. dritte binomische Formel): {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x +\sqrt{3})(x+1)(x -1)(x -\sqrt{3}){{/formula}} 49 49 ii) //Nullstellen// (jeweils 1-fach): {{formula}}-\sqrt{3}{{/formula}}, {{formula}}-1{{/formula}}, {{formula}}+1{{/formula}}, {{formula}}+\sqrt{3}{{/formula}} 50 -iii) //Vorzeichenanalyse ://40 +iii) //Vorzeichenanalyse.// 51 51 iii.1) Wenn die Vielfachheiten aller Nullstellen bekannt sind, dann genügt auch das Globalverhalten bzw. eine Teststelle. 52 52 iii.2) Naives Vorgehen: Wähle in jedem der fünf Teilintervalle eine //Teststelle// und ermittle das Vorzeichen vom zugehörigen Funktionswert. 53 53