Änderungen von Dokument Lösung Anwendung drei Verfahren

Zuletzt geändert von Martin Rathgeb am 2025/04/07 23:23

Von Version 30.1
bearbeitet von Martin Rathgeb
am 2025/04/07 01:34
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 23.1
bearbeitet von Martin Rathgeb
am 2025/04/07 00:33
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,35 +3,34 @@
3 3  
4 4  **Lösungsschritte:**
5 5  (% class="abc" %)
6 -1. **Tabellarisches Verfahren (Teil 1).**
6 +1. //Tabellarisches Verfahren (Teil 1).//
7 7  
8 -//Wertetabelle I.//
9 -
8 +**Wertetabelle I (ganzzahlige Werte):**
10 10  (% class="border slim" %)
11 -|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|
12 -|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|
10 +|{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}
11 +|{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}}
13 13  
14 -//Interpretation.//
15 -Die Funktionswerte sind überall nicht-negativ. Bei {{formula}}x = \pm 1{{/formula}} ergibt sich jeweils {{formula}}f(x) = 0{{/formula}}. Zwischen den Nullstellen ist das Vorzeichenverhalten noch unklar.
13 +**Interpretation:**
14 +Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig.
16 16  
17 -2. **Tabellarisches Verfahren (Teil 2).**
16 +2. //Tabellarisches Verfahren (Teil 2).//
18 18  
19 -//Wertetabelle II.//
18 +**Wertetabelle II (ergänzende Zwischenwerte):**
20 20  (% class="border slim" %)
21 21  |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}
22 22  |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}
23 23  
24 -//Interpretation.//
25 -i) Wir kennen nun nicht nur die beiden Nullstellen {{formula}}x=\pm 1{{/formula}}, sondern wissen auch, dass es in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} noch jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}} gibt, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
26 -ii) Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion {{formula}}f{{/formula}} (vom Grad 4) unter Berücksichtigung der Vielfachheiten nur bis zu 4 reelle Nullstellen. Also sind alle Nullstellen von {{formula}}f{{/formula}} einfach mit {{formula}}-2<x_1<-1,5{{/formula}}, {{formula}}x_2=-1{{/formula}}, {{formula}}x_3=+1{{/formula}} und {{formula}}+1,5<x_4<2{{/formula}}.
27 -iii) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x<x_1{{/formula}}, für alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
23 +**Interpretation:**
24 +i) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2.
25 +ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5.
26 +iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn bei beiden Intervallen haben die Funktionswerte an den Rändern verschiedene Vorzeichen.
28 28  
29 29  3. **Graphische Skizze:**
30 30  
31 31  i) Der Graph von {{formula}}f{{/formula}} ist //symmetrisch zur y-Achse//, denn {{formula}}f{{/formula}} ist //gerade//, denn die im Funktionsterm der Polynomfunktion {{formula}}f{{/formula}} auftretenden x-Potenzen sind allesamt gerade.
32 32  ii) Der Graph von {{formula}}f{{/formula}} kommt von links //oben// und geht nach rechts //oben//, denn die Vergleichsfunktion von {{formula}}f{{/formula}} ist die Potenzfunktion {{formula}}g{{/formula}} mit {{formula}}g(x)=x^4{{/formula}}.
33 -iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse bei {{formula}}x_1{{/formula}} zwischen -2 und -1,5 (mit VZW +/-), bei {{formula}}x_2=-1{{/formula}} (mit VZW -/+), bei {{formula}}x_3=+1{{/formula}} (mit VZW +/-) und bei {{formula}}x_4{{/formula}} zwischen +1,5 und +2 (mit VZW -/+).
34 -iv) Also gilt {{formula}}f(x)>0{{/formula}} r alle {{formula}}x<x_1{{/formula}}, r alle {{formula}}x_2<x<x_3{{/formula}} und r alle {{formula}}x>x_4{{/formula}}.
32 +iii) Der Graph von {{formula}}f{{/formula}} schneidet der Wertetabelle gemäß die x-Achse zwischen -2 und -1,5 (VZW +/-), bei {{formula}}x=-1{{/formula}} (VZW -/+), bei {{formula}}x=+1{{/formula}} (VZW +/-) und zwischen +1,5 und +2 (VZW -/+).
33 +iv) Also gilt {{formula}}f(x)>0{{/formula}} zunächst bis zur ersten Nullstelle (zwischen -2 und -1,5 gelegen), weiter zwischen den Nullstellen -1 und +1 und zuletzt ab der vierten Nullstelle (zwischen +1,5 und +2 gelegen).
35 35  
36 36  4. **Rechnerisches Verfahren:**
37 37  
... ... @@ -43,9 +43,9 @@
43 43  
44 44  | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} |
45 45  | {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
46 -| {{formula}}]-\sqrt{3}; -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
47 -| {{formula}}]-1;\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
48 -| {{formula}}]1;\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
45 +| {{formula}}]-\sqrt{3}, -1[{{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
46 +| {{formula}}]-1,\ 1[{{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
47 +| {{formula}}]1,\ \sqrt{3}[{{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) < 0{{/formula}} |
49 49  | {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) > 0{{/formula}} |
50 50  
51 51  iv) //Gesuchte Lösung://