Wiki-Quellcode von Lösung Anwendung drei Verfahren
Version 13.1 von Martin Rathgeb am 2025/04/06 23:56
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | **Aufgabenstellung:** | ||
2 | Gegeben ist die Polynomfunktion {{formula}}f{{/formula}} mit {{formula}}f(x) = x^4 - 4x^2 + 3{{/formula}}. Untersuche, für welche Werte von {{formula}}x{{/formula}} die Ungleichung {{formula}}f(x) > 0{{/formula}} erfüllt ist. Vergleiche dazu die drei grundlegenden Verfahren zur Bearbeitung einer Polynomungleichung: | ||
3 | |||
4 | **Lösungsschritte:** | ||
5 | (% class="abc" %) | ||
6 | 1. //Tabellarisches Verfahren (Teil 1).// | ||
7 | |||
8 | **Wertetabelle I (ganzzahlige Werte):** | ||
9 | (% class="border slim" %) | ||
10 | |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} | ||
11 | |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}0{{/formula}} |{{formula}}3{{/formula}}|{{formula}}0{{/formula}} |{{formula}}3{{/formula}} | ||
12 | |||
13 | **Interpretation:** | ||
14 | Die Funktion nimmt in diesen Punkten ausschließlich nicht-negative Werte an. Nur bei {{formula}}x = \pm 1{{/formula}} wird der Funktionswert null. Zwischen diesen Punkten bleibt das Verhalten unklar – wir sehen noch keine negativen Werte. Eine genauere Untersuchung ist nötig. | ||
15 | |||
16 | 2. //Tabellarisches Verfahren (Teil 2).// | ||
17 | |||
18 | **Wertetabelle II (ergänzende Zwischenwerte):** | ||
19 | (% class="border slim" %) | ||
20 | |{{formula}}x{{/formula}} |{{formula}}-2{{/formula}}|{{formula}}-1{,}5{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-0{,}5{{/formula}}|{{formula}}0{{/formula}}|{{formula}}0{,}5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}1{,}5{{/formula}}|{{formula}}2{{/formula}}| | ||
21 | |{{formula}}f(x){{/formula}} |{{formula}}3{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}+2,...{{/formula}}|{{formula}}3{{/formula}}|{{formula}}+2,...{{/formula}}|{{formula}}0{{/formula}} |{{formula}}-0,...{{/formula}}|{{formula}}3{{/formula}}| | ||
22 | |||
23 | **Interpretation:** | ||
24 | i) Also gilt {{formula}}f(x)>0{{/formula}} für alle {{formula}}x{{/formula}} kleiner -2, für alle {{formula}}x{{/formula}} zwischen -1 und +1 und für alle {{formula}}x{{/formula}} größer +2. | ||
25 | ii) Entsprechend gilt {{formula}}f(x)<0{{/formula}} für alle {{formula}}x{{/formula}} zwischen -1,5 und -1 und für alle {{formula}}x{{/formula}} zwischen +1 und +1,5. | ||
26 | iii) Hingegen liegt in den Intervallen {{formula}}]-2; -1,5[{{/formula}} und {{formula}}]+1,5; +2[{{/formula}} jeweils mindestens eine Nullstelle von {{formula}}f{{/formula}}, denn für beide Intervalle gilt: An den Rändern hat {{formula}}f(x){{\formula}} unterschiedliche Vorzeichen. | ||
27 | |||
28 | 3. **Graphische Skizze:** | ||
29 | |||
30 | Die Funktion ist **geraden Grades** (4) mit **positivem Leitkoeffizienten** (1). Daraus folgt: | ||
31 | - {{formula}}\lim_{x \to \pm \infty} f(x) = +\infty{{/formula}} | ||
32 | - Die Funktion ist **achsensymmetrisch**, da alle Potenzen gerade sind. | ||
33 | - Die vorherige Tabelle zeigt, dass der Graph in der Nähe von {{formula}}x = \pm 1{{/formula}} die x-Achse berührt und dazwischen negativ wird. | ||
34 | |||
35 | **Lage zur x-Achse:** | ||
36 | - Nullstellen: {{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}} | ||
37 | - Graph liegt **oberhalb der x-Achse** für: | ||
38 | - {{formula}}x < -\sqrt{3}{{/formula}} | ||
39 | - {{formula}}-1 < x < 1{{/formula}} | ||
40 | - {{formula}}x > \sqrt{3}{{/formula}} | ||
41 | |||
42 | --- | ||
43 | |||
44 | 4. **Rechnerisches Verfahren:** | ||
45 | |||
46 | Faktorisieren: | ||
47 | |||
48 | {{formula}}f(x) = x^4 - 4x^2 + 3 = (x^2 - 1)(x^2 - 3) = (x - 1)(x + 1)(x - \sqrt{3})(x + \sqrt{3}){{/formula}} | ||
49 | |||
50 | **Nullstellen:** | ||
51 | |||
52 | {{formula}}x = -\sqrt{3},\ -1,\ 1,\ \sqrt{3}{{/formula}} | ||
53 | |||
54 | **Vorzeichenanalyse:** | ||
55 | |||
56 | | Intervall | Testwert | Vorzeichen von {{formula}}f(x){{/formula}} | | ||
57 | |----------------------------------|----------|---------------------------------------------| | ||
58 | | {{formula}}x < -\sqrt{3}{{/formula}} | {{formula}}x = -2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | | ||
59 | | {{formula}}(-\sqrt{3}, -1){{/formula}} | {{formula}}x = -1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | | ||
60 | | {{formula}}(-1,\ 1){{/formula}} | {{formula}}x = 0{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | | ||
61 | | {{formula}}(1,\ \sqrt{3}){{/formula}} | {{formula}}x = 1{,}5{{/formula}} | {{formula}}f(x) = -0{,}9375 < 0{{/formula}} | | ||
62 | | {{formula}}x > \sqrt{3}{{/formula}} | {{formula}}x = 2{{/formula}} | {{formula}}f(x) = 3 > 0{{/formula}} | | ||
63 | |||
64 | **Gesuchte Lösung:** | ||
65 | {{formula}}f(x) > 0{{/formula}} ist erfüllt für | ||
66 | |||
67 | **L** = {{formula}}(-\infty,\ -\sqrt{3}) \cup (-1,\ 1) \cup (\sqrt{3},\ \infty){{/formula}} | ||
68 | |||
69 | --- | ||
70 | |||
71 | 5. **Vergleich der Verfahren:** | ||
72 | |||
73 | - Das **tabellarische Verfahren** gibt erste Hinweise auf das Verhalten der Funktion, eignet sich zur Erkundung durch systematisches Probieren, bleibt aber ungenau bei der Bestimmung von Nullstellenpositionen. | ||
74 | - Das **graphische Verfahren** bietet anschauliche Orientierung: Vorzeichenwechsel, Lage zur x-Achse und Symmetrie werden sichtbar. Es stützt das funktionale Verständnis, ist aber zeichengenauigkeitsabhängig. | ||
75 | - Das **rechnerische Verfahren** liefert exakte Aussagen zu Nullstellen, Intervallen und Lösungsmenge. Es ist unverzichtbar für formale Sicherheit, setzt jedoch algebraische Fähigkeiten voraus. | ||
76 | |||
77 | **Didaktisch:** | ||
78 | Die Verfahren stehen in einer natürlichen Lernprogression: | ||
79 | Vom **konkreten Probieren (Tabelle)** über das **visuelle Erfassen (Graph)** hin zum **symbolischen Durchdringen (Rechnung)**. Ihr Zusammenspiel stärkt nachhaltiges Verständnis für das Verhalten ganzrationaler Funktionen. | ||
80 | |||
81 | {{/loesung}} | ||
82 | |||
83 | --- | ||
84 | |||
85 | **Zusammenfassung:** | ||
86 | - Das **tabellarische Verfahren** zeigt erste Hinweise auf Nullstellen und Verläufe. | ||
87 | - Das **graphische Verfahren** unterstützt die visuelle Einschätzung von Steigung und Vorzeichenbereichen. | ||
88 | - Das **rechnerische Verfahren** liefert die exakte Lösung in Produktform und damit eine genaue Bestimmung der Lösungsmenge. | ||
89 | |||
90 | {{/loesung}} |