Änderungen von Dokument BPE 4.1 Exponentialfunktion und Eulersche Zahl
                  Zuletzt geändert von slavko Lamp am 2025/09/30 13:59
              
      
      Von Version  90.1 
    
    
              bearbeitet von Martin Rathgeb
        
am 2025/04/24 23:09
     am 2025/04/24 23:09
      Änderungskommentar:
              Es gibt keinen Kommentar für diese Version
          
         
      Auf Version  91.1 
    
    
              bearbeitet von Martin Rathgeb
        
am 2025/04/24 23:15
     am 2025/04/24 23:15
      Änderungskommentar:
              Es gibt keinen Kommentar für diese Version
          
         Zusammenfassung
- 
          Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
 
Details
- Seiteneigenschaften
 - 
      
- Inhalt
 -   
... ... @@ -4,7 +4,7 @@ 4 4 [[Kompetenzen.K4]] Ich kann eine Exponentialfunktion am Schaubild erkennen 5 5 [[Kompetenzen.K6]] Ich kann die Eulersche Zahl {{formula}}e{{/formula}} auf zwei Nachkommastellen genau angeben 6 6 [[Kompetenzen.K1]] Ich kann die besondere Bedeutung der natürlichen Basis nennen 7 -[[Kompetenzen.K 4]] [[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen7 +[[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen 8 8 9 9 {{lernende}} 10 10 [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/UcgSUN2M]] ... ... @@ -18,8 +18,8 @@ 18 18 {{/aufgabe}} 19 19 20 20 {{aufgabe id="e-Funktion im Vergleich" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}} 21 -[[image:EFunktion.svg||style="float: right; width:400px"]]Gegeben ist der Graph zu {{formula}}f(x)=e^x{{/formula}}. Skizzieredeine Vermutung wie die Graphen von {{formula}}g(x)=2^x{{/formula}}und{{formula}}h(x)=3^x{{/formula}}verlaufen.22 -( Ohne Taschenrechner, ohne Wertetabelle)21 +[[image:EFunktion.svg||style="float: right; width:400px"]]Gegeben ist der Graph der Funktion {{formula}}f{{/formula}} mit {{formula}}f(x) = e^x{{/formula}}. 22 +Skizziere (ohne Taschenrechner, ohne Wertetabelle) die Graphen der Funktionen {{formula}}g{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}g(x) = 2^x{{/formula}} und {{formula}}h(x) = 3^x{{/formula}} im Vergleich zum Graphen von {{formula}}f{{/formula}}. 23 23 {{/aufgabe}} 24 24 25 25 {{aufgabe id="Graphen" afb="II" kompetenzen="K4" quelle="Holger Engels" zeit="8" cc="by-sa"}}