Zuletzt geändert von Martin Rathgeb am 2025/04/25 01:56

Von Version 91.1
bearbeitet von Martin Rathgeb
am 2025/04/25 01:15
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 90.1
bearbeitet von Martin Rathgeb
am 2025/04/25 01:09
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -4,7 +4,7 @@
4 4  [[Kompetenzen.K4]] Ich kann eine Exponentialfunktion am Schaubild erkennen
5 5  [[Kompetenzen.K6]] Ich kann die Eulersche Zahl {{formula}}e{{/formula}} auf zwei Nachkommastellen genau angeben
6 6  [[Kompetenzen.K1]] Ich kann die besondere Bedeutung der natürlichen Basis nennen
7 -[[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen
7 +[[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann einen Basiswechsel durchführen
8 8  
9 9  {{lernende}}
10 10  [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/UcgSUN2M]]
... ... @@ -18,8 +18,8 @@
18 18  {{/aufgabe}}
19 19  
20 20  {{aufgabe id="e-Funktion im Vergleich" afb="I" kompetenzen="K4" quelle="Niklas Wunder, Katharina Schneider" zeit="5" cc="by-sa"}}
21 -[[image:EFunktion.svg||style="float: right; width:400px"]]Gegeben ist der Graph der Funktion {{formula}}f{{/formula}} mit {{formula}}f(x) = e^x{{/formula}}.
22 -Skizziere (ohne Taschenrechner, ohne Wertetabelle) die Graphen der Funktionen {{formula}}g{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}g(x) = 2^x{{/formula}} und {{formula}}h(x) = 3^x{{/formula}} im Vergleich zum Graphen von {{formula}}f{{/formula}}.
21 +[[image:EFunktion.svg||style="float: right; width:400px"]]Gegeben ist der Graph zu {{formula}}f(x)=e^x{{/formula}}. Skizziere deine Vermutung wie die Graphen von {{formula}}g(x)=2^x{{/formula}} und {{formula}}h(x)=3^x{{/formula}} verlaufen.
22 +(Ohne Taschenrechner, ohne Wertetabelle)
23 23  {{/aufgabe}}
24 24  
25 25  {{aufgabe id="Graphen" afb="II" kompetenzen="K4" quelle="Holger Engels" zeit="8" cc="by-sa"}}