Wiki-Quellcode von BPE 4.2 Transformationen

Version 30.1 von Niklas Wunder am 2024/12/18 13:49

Verstecke letzte Bearbeiter
VBS 17.1 1 {{seiteninhalt/}}
holger 1.1 2
Holger Engels 19.2 3 {{lernende}}
4 [[GeoGebra-Buch>>https://www.geogebra.org/m/khnsgz5a#material/c7yGDeph]]
5 [[KMap Interaktive Elemente>>https://kmap.eu/app/browser/Mathematik/Exponentialfunktionen/Verschieben%2C%20Strecken%2C%20Spiegeln]]
6 {{/lernende}}
Holger Engels 19.1 7
Holger Engels 18.1 8 [[Kompetenzen.K6]] [[Kompetenzen.K4]] Ich kann beschreiben, durch welche Kette von Transformationen ein gegebener Funktionsterm aus dem der Standard Exponentialfunktion hervorgegangen ist
9 [[Kompetenzen.K6]] [[Kompetenzen.K4]] Ich kann beschreiben, durch welche Kette von Transformationen ein gegebenes Schaubild aus dem der Standard Exponentialfunktion hervorgegangen ist
martina 9.1 10 [[Kompetenzen.K4]] Ich kann den Funktionsterm zu einer verbal gegebenen Transformation angeben
11 [[Kompetenzen.K4]] Ich kann den Funktionsterm zu einer grafisch gegebenen Transformation angeben
VBS 5.1 12 (Im grundlegenden Anforderungsniveau wird horizontal nur entweder veschoben oder gestreckt. Im erhöhten Anforderungsniveau werden auch Kombinationen dieser beiden Transformationen betrachtet)
holger 1.1 13
Katharina Schneider 20.1 14 {{aufgabe id="Aufstellen eines Funktionstermes" afb="II" kompetenzen="K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/grundlegend/2022_M_grundlege_20.pdf]]" niveau="g" tags="iqb" cc="by"}}
15 [[image:Graphexponentialfunktion.PNG||width="180" style="float: right"]]
16 1. Die Abbildung zeigt den Graphen der Funktion {{formula}}f: x \mapsto a \cdot b^x{{/formula}} mit {{formula}} a,b \in \mathbb{R}^+{{/formula}}. Bestimme passende Werte von {{formula}}a{{/formula}} und {{formula}}b{{/formula}}.
17
18
19 2. Der Graph der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}g: x \mapsto 3^x{{/formula}} wird um 2 in negative x-Richtung verschoben. Zeige, dass der dadurch entstandene Graph durch eine Streckung des Graphen von {{formula}}g{{/formula}} in y-Richtung erzeugt werden kann.
20 {{/aufgabe}}
21
VBS 17.1 22 {{aufgabe id="Term und Skizze" afb="I" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="4"}}
kickoff kickoff 16.1 23 Der Graph der Funktion //f// mit {{formula}}f(x)=2^x{{/formula}} wird durch mehrere Transformationen verändert. Stelle den zugehörigen Funktionsterm auf und skizziere den neuen Graphen.
kickoff kickoff 11.1 24
25 a) Verschiebung in y-Richtung um 3
VBS 17.1 26
kickoff kickoff 11.1 27 b) Streckung in y-Richtung mit dem Faktor {{formula}}-\frac{1}{2}{{/formula}} und Verschiebung in y-Richtung um -5
VBS 17.1 28
kickoff kickoff 11.1 29 c) Spiegelung an der y-Achse; Streckung in y-Richtung mit dem Faktor 1,5; Verschiebung in y-Richtung um 1
VBS 17.1 30
kickoff kickoff 11.1 31 d) Streckung in x-Richtung mit dem Faktor 0,5 und Verschiebung in y-Richtung um -2
32 {{/aufgabe}}
33
Holger Engels 18.1 34 {{aufgabe id="Transformationen aus Schaubild" afb="I" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="4"}}
35 [[Abbildung 1>>image:Exp-Funktion.png||style="float:right;width:250px"]]Gegeben ist der untenstehende Graph der Funktion //f// mit {{formula}}f(x)=a\cdot2^{\pm x}+d{{/formula}}. Beschreibe durch welche Transformationen der Graph von //f// aus dem Graphen der Funktion //g// mit {{formula}}g(x)=2^x{{/formula}} hervorgeht, und stelle den zugehörigen Funktionsterm auf. \\
kickoff kickoff 14.1 36 {{/aufgabe}}
kickoff kickoff 11.1 37
Katharina Schneider 23.1 38 {{aufgabe id="Transformationen aus Funktionsterm" afb="II" kompetenzen="K6,K4" quelle="Niklas Wunder, Katharina Schneider" cc="BY-SA" zeit="6"}}
39
40 Skizziere das Schaubild von {{formula}} g(x) {{/formula}} und beschreibe wie {{formula}}K_g {{/formula}} aus dem Graphen von {{formula}} f {{/formula}} mit {{formula}} f(x)=e^x {{/formula}} entsteht.
41
42 a) {{formula}} g(x)=e^x-2 {{/formula}}
43
Katharina Schneider 24.1 44 b) {{formula}} g(x)=e^{3x}+2,5 {{/formula}}
Katharina Schneider 23.1 45
46 c) {{formula}} g(x)=-1,5e^x {{/formula}}
47
Katharina Schneider 24.1 48 d) {{formula}} g(x)=e^{-0,5x}+1 {{/formula}}
Katharina Schneider 23.1 49
50
51 {{/aufgabe}}
52
53 {{aufgabe id="Asymtoten bestimmen" afb="II" kompetenzen="K6,K4" quelle="Niklas Wunder, Katharina Schneider" cc="BY-SA" zeit="8"}}
54
55 Skizziere jeweils das Schaubild der Funktion und bestimme die Gleichung der Asymptoten.
56
57 a) {{formula}} f(x)=e^x-1,5 {{/formula}}
58
Katharina Schneider 25.1 59 b) {{formula}} g(x)=e^{-x}+\pi {{/formula}}
Katharina Schneider 23.1 60
Niklas Wunder 30.1 61 c) {{formula}} h(x)=3^{-x}+6^{-x} {{/formula}}
Katharina Schneider 23.1 62
Niklas Wunder 28.1 63 d) {{formula}} i(x)=\frac{2}{3}^x{{/formula}}
Katharina Schneider 23.1 64 {{/aufgabe}}
65
Katharina Schneider 26.1 66 {{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="3"/}}