Zuletzt geändert von Holger Engels am 2025/05/21 15:19

Von Version 133.1
bearbeitet von Kim Fujan
am 2025/05/20 10:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 131.3
bearbeitet von Kim Fujan
am 2025/05/20 10:15
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -111,6 +111,7 @@
111 111  {{/aufgabe}}
112 112  
113 113  
114 +
114 114  {{aufgabe id="Gleichungen gemeinsamer Form" afb="III" kompetenzen="K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="6"}}
115 115  Die Gleichungen sehen auf den ersten Blick unterschiedlich aus, weisen aber ähnliche Strukturen auf und können alle mithilfe der Substitution gelöst werden. Selbstverständlich gibt es für manche Teilaufgaben auch andere Lösungswege ohne Substitution.
116 116  (%class="abc"%)
... ... @@ -268,6 +268,10 @@
268 268  |{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}}
269 269  {{/aufgabe}}
270 270  
272 +
273 +
274 +
275 +
271 271  {{aufgabe id="Gleichungen aufstellen II" afb="III" kompetenzen="K2,K5" quelle="Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}}
272 272  Nenne möglichst viele (wahre) Gleichungen der folgenden Formen, wobei {{formula}} a, b, c \in \{2; 3; 4; \ldots; 16\} {{/formula}} gelten soll:
273 273  {{formula}} c = a^b\:; \qquad c = \sqrt[a]{b}\:; \qquad c = \log_a(b)\:; \qquad c = a\cdot b\:. {{/formula}}