Änderungen von Dokument BPE 4.5 Logarithmus und Exponentialgleichungen
Zuletzt geändert von Holger Engels am 2025/03/13 07:51
Von Version 98.1
bearbeitet von Dirk Tebbe
am 2025/02/26 14:16
am 2025/02/26 14:16
Änderungskommentar:
Neues Bild x^3und8.svg hochladen
Auf Version 106.1
bearbeitet von Dirk Tebbe
am 2025/02/26 14:36
am 2025/02/26 14:36
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -54,8 +54,8 @@ 54 54 |y|0|1|8|27 55 55 ))) 56 56 1. zwei Graphen 57 -[[image: 8und2^x.svg||width="200px"]]58 -[[image:x^3 57 +[[image:2^xund8.svg||width="200px"]] 58 +[[image:x^3und8.svg||width="200px"]] 59 59 {{/aufgabe}} 60 60 61 61 {{aufgabe id="Logarithmen auswerten" afb="II" kompetenzen="K4,K5" quelle="Elke Hallmann, Martin Rathgeb, Dirk Tebbe" cc="BY-SA" zeit="10"}} ... ... @@ -64,12 +64,12 @@ 64 64 [[image:Logarithmus_neu.svg||width="600px"]] 65 65 66 66 (% class="abc" %) 67 -1. {{formula}} \log_{10}( 10) {{/formula}}68 -1. {{formula}} \log_{100}( 10) {{/formula}}69 -1. {{formula}} \log_{1 1}(10) {{/formula}}67 +1. {{formula}} \log_{10}(0.1) {{/formula}} 68 +1. {{formula}} \log_{100}(0.1) {{/formula}} 69 +1. {{formula}} \log_{0.1}(0.1) {{/formula}} 70 70 1. {{formula}} \log_{10}(1000) {{/formula}} 71 71 1. {{formula}} \log_{10}(50) {{/formula}} 72 -1. {{formula}} \log_{1 1}(1000) {{/formula}}72 +1. {{formula}} \log_{0.1}(1000) {{/formula}} 73 73 1. {{formula}} \log_{10}(1) {{/formula}} 74 74 1. {{formula}} \log_{100}(10) {{/formula}} 75 75 1. {{formula}} \log_{10}(10) {{/formula}} ... ... @@ -94,8 +94,8 @@ 94 94 |Typ 1 Umkehroperationen|Typ 2 Ausklammern|Typ 3 Substitution 95 95 |{{formula}}x^2 = 2{{/formula}}|{{formula}}x^2-2x = 0{{/formula}}|{{formula}}x^4-40x^2+144 = 0{{/formula}} 96 96 |{{formula}}x^4 = e{{/formula}}|{{formula}}2x^e = x^{2e}{{/formula}}|{{formula}}x^{2x}+x^e+1 = 0{{/formula}} 97 -|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|2 98 -|{{formula}}f _4(x){{/formula}}|2|197 +|{{formula}}e^x = e{{/formula}}|{{formula}}2e^x = e^{2x}{{/formula}}|{{formula}}10^{6x}-2\cdot 10^{3x}+1 = 0{{/formula}} 98 +|{{formula}}3e^x = \frac{1}{2}e^{-x}{{/formula}}|{{formula}}x\cdot 3^x+4\cdot 3^x = 0{{/formula}}|{{formula}}3e^x-1 = \frac{1}{3}e^{-x}{{/formula}} 99 99 {{/aufgabe}} 100 100 101 101 Nenne eine passende Gleichung. Die Gleichung kann ich nach x auflösen, indem ich {{formula}} \ldots {{/formula}}
- 2^xund8.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.dirktebbe - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +60.0 KB - Inhalt
- 2^xund8.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.dirktebbe - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +50.3 KB - Inhalt