Lösung Gleichungstypen einstudieren
Zuletzt geändert von akukin am 2025/08/11 15:29
Typ 1: Umkehroperationen
- \(x=\pm \sqrt{2}\)
- \(x= \pm \sqrt[4]{e}\)
- \(x = 1\) durch Exponentenvergleich
- \(3e^x = \frac{1}{2}e^{-x}\qquad \mid \cdot e^x\)
\(3e^{2x} = \frac{1}{2} \qquad \mid :3\)
\(2x= ln\left( \frac{1}{6} \right)\qquad \mid :2 \)
\(x= \frac{1}{2}ln\left( \frac{1}{6} \right) \)
Typ 2: Ausklammern
- \(x^2-2x = 0\)
\(x\cdot (x-2) = 0\)
\(x_1=0 \quad , \quad x_2=2\) - \(x^e \cdot(2-x^e)=0\)
\(x_1=0 \quad , \quad x_2=\sqrt[e]{2}\) - \(e^x \cdot (2-e^x) = 0\)
\(e^x \neq 0 \quad , \quad x_1=ln(2)\) - \(3^x\cdot (x+4) = 0\)
\(3^x \neq 0 \quad , \quad x_1=-4)\)
Typ 2: Substitution
- \(x^4-40x^2+144 = 0\)
Substitution \(x^2 = u\)
\(u_1=-4 \quad , \quad u_2=36\)
Resubstitution:
\(x^2 = 4 \longleftrightarrow x_{1,2}=\pm2 \)
\(x^2 = 36 \longleftrightarrow x_{3,4}=\pm6\)
- \(x^{2e}+x^e+1 = 0\)
Substitution \(x^e = u\)
abc-Formel liefert keine Lösung, da die Diskriminante negativ ist.
- \(10^{6x}-2\cdot 10^{3x}+1 = 0\) durch Exponentenvergleich
Substitution \(10^{3x} = u\)
\(u=1\)
Resubstitution:
\(10^{3x}=1 \longleftrightarrow x_{1}=0\)
- \(3e^x-1 = \frac{1}{3}e^{-x}\)
\(3e^x-1-\frac{1}{3}e^{-x}=0\)
\(e^{-x}\cdot(3e^{2x}-e^x-\frac{1}{3})\)
Substitution \(e^x = u\)
\(3u^2-u - \frac{1}{3}=0\)
\(u_1=\frac{1+\sqrt{5}}{6} \quad , \quad u_2=\frac{1-\sqrt{5}}{6}\)
Resubstitution:
\(e^x = \frac{1+\sqrt{5}}{6} \longleftrightarrow x_1=ln \left( \frac{1+\sqrt{5}}{6} \right)\)
\(e^x = \frac{1-\sqrt{5}}{6} \longleftrightarrow \) keine weitere Lösung