Änderungen von Dokument BPE 7 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/12/12 18:46
Von Version 105.1
bearbeitet von Holger Engels
am 2024/02/05 16:24
am 2024/02/05 16:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 103.1
bearbeitet von Caroline Leplat
am 2024/02/05 15:15
am 2024/02/05 15:15
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.h olgerengels1 +XWiki.mathemagicbyleplat - Inhalt
-
... ... @@ -18,12 +18,6 @@ 18 18 Der Vektor {{formula}}\vec{a}{{/formula}} mit der Länge 2 cm und der Vektor {{formula}}\vec{b}{{/formula}} mit der Länge 3 cm schließen einen Winkel {{formula}}\alpha{{/formula}} ein. Begründen Sie, dass die Gegenvektoren von {{formula}}\vec{a}{{/formula}} und {{formula}}\vec{b}{{/formula}} den gleichen Winkel einschließen. 19 19 {{/aufgabe}} 20 20 21 -{{aufgabe id="Richtungsvektor" afb="II" kompetenzen="K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/grundlegend/2021_M_grundlege_16.pdf]]" niveau="g" tags="iqb"}} 22 -1. Benennen Sie die in der Figur erkennbaren Vektoren. 23 -1. Begründen Sie mit Hilfe der Skizze, dass die beiden Gleichungen 24 - {{formula}}\vec{AB}=\vec{OA}+\vec{OB}{{/formula}} und 25 - {{formula}}\vec{AB}=\vec{OB}-\vec{OA}{{/formula}} den gleichen Richtungsvektor beschreiben. 26 -{{/aufgabe}} 27 27 28 28 29 29 {{aufgabe id="Nachweis Quader" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/erhoeht/Beispielaufgaben.pdf]]" niveau="g" tags="iqb"}} ... ... @@ -68,4 +68,35 @@ 68 68 1. Gib einen Term an, mit dem man die Koordinaten von {{formula}}B{{/formula}} bestimmen könnte, wenn die Koordinaten von {{formula}}A{{/formula}} und {{formula}}F{{/formula}} sowie die Komponenten von {{formula}} \vec{v}{{/formula}} bekannt wären. 69 69 {{/aufgabe}} 70 70 65 +{{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb"}} 66 +[[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]] 67 +Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung) 68 + 69 +1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist. 70 +1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}. 71 +Begründe, dass {{formula}}|\overline{MD_k}|={{/formula}}{{formula}}\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist. 72 +Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}. 73 + 74 + 75 +Für jeden Wert von k liegt die Seitenfläche {{formula}}BCD_k{{/formula}} in der Ebene {{formula}}L_k{{/formula}}. 76 + 77 +3. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})// 78 + 79 +4. Ermittle denjenigen Wert von {{formula}}k{{/formula}}, für den die Größe des Winkels, unter dem die x,,3,,-Achse die Ebene {{formula}}L_k{{/formula}} schneidet, 30° beträgt. 80 + 81 + 82 +[[image:gleichschenkligesdreieckabb2.png||width="220" style="float: right"]] 83 +Zusätzlich zu den Pyramiden wird der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte {{formula}}A{{/formula}} und {{formula}}Q(1|1|3){{/formula}} sind Eckpunkte des Quaders, die Seitenflächen des Quaders sind parallel zu den Koordinatenebenen. 84 +Für {{formula}}k=6{{/formula}} enthält die Seitenfläche {{formula}}BCD_k{{/formula}} der Pyramide den Eckpunkt {{formula}}Q{{/formula}} des Quaders. Für kleinere Werte von {{formula}}k{{/formula}} schneidet die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader in einem Vieleck. 85 + 86 +5. Für einen Wert von {{formula}}k{{/formula}} verläuft die Seitenfläche {{formula}}BCD_k{{/formula}} durch die Eckpunkte {{formula}}P{{/formula}} und {{formula}}R{{/formula}} des Quaders. Bestimme diesen Wert von {{formula}} k{{/formula}} //(zur Kontrolle: {{formula}}k=4{{/formula}})// 87 + 88 +6.Gib in Abhängigkeit von {{formula}}k{{/formula}} die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader schneidet. 89 + 90 + 91 + 92 + 93 +7. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet.[[image:gleichschenkligesdreieckabb3.PNG||width="220" style="float: right"]] Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6{{/formula}} der Pyramide. Ermittle die Koordinaten des Punkts {{formula}}Q_h{{/formula}}. 94 +{{/aufgabe}} 95 + 71 71 {{seitenreflexion/}}